12-267/Homework Assignment 6: Difference between revisions
No edit summary |
Dongwoo.kang (talk | contribs) No edit summary |
||
| (9 intermediate revisions by 3 users not shown) | |||
| Line 1: | Line 1: | ||
{{12-267/Navigation}} |
{{12-267/Navigation}} |
||
{{In Preparation}} |
|||
This assignment is due in class on Friday November 9. Here and everywhere, '''neatness counts!!''' You may be brilliant and you may mean just the right things, but if your readers have a hard time deciphering your work they will give up and assume it is wrong. |
This assignment is due in class on Friday November 9. Here and everywhere, '''neatness counts!!''' You may be brilliant and you may mean just the right things, but if your readers have a hard time deciphering your work they will give up and assume it is wrong. |
||
'''Task 1.''' Draw the phase portraits for the following systems, near <math>(x,y)=(0,0)</math>: |
|||
'''Task 1.''' |
|||
# <math>\begin{cases} \dot{x}=2x+y \\ \dot{y}=-x+4y \end{cases}</math>. |
|||
# <math>\begin{cases} \dot{x}=4x-5y \\ \dot{y}=4x-4y \end{cases}</math>. |
|||
# <math>\begin{cases} \dot{x}=x-2y \\ \dot{y}=-2x+4y \end{cases}</math>. |
|||
# <math>\begin{cases} \dot{x}=-x+y \\ \dot{y}=-5x+3y \end{cases}</math>. |
|||
# <math>\begin{cases} \dot{x}=-5x+4y \\ \dot{y}=-8x+7y \end{cases}</math>. |
|||
'''Task 2.''' Draw the phase portrait of the system |
'''Task 2.''' Draw the phase portrait of the system |
||
| Line 12: | Line 16: | ||
near the point <math>(x,y)=(1,2)</math>. |
near the point <math>(x,y)=(1,2)</math>. |
||
'''Task 3.''' Solve using diagonalization (one solution is enough): |
|||
| ⚫ | |||
# <math>v'=\begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix}v + \begin{pmatrix} e^t \\ t \end{pmatrix}</math>. |
|||
# <math>v'=\begin{pmatrix} 2 & -5 \\ 1 & -2 \end{pmatrix}v + \begin{pmatrix} -\cos t \\ \sin t \end{pmatrix}</math>. |
|||
'''Task 4.''' Assume <math>t>0</math>. For the following equation, |
|||
<center><math>tv'=\begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix}v + \begin{pmatrix} 1-t^2 \\ 2t \end{pmatrix}</math></center>, |
|||
it is given that a solution of the homogeneous version is |
|||
<center><math>v(t) = c_1\begin{pmatrix}1\\1\end{pmatrix}t + \begin{pmatrix}1\\3\end{pmatrix}t^{-1}</math>.</center> |
|||
Use "fundamental solutions" to find a solution of the full equation. |
|||
| ⚫ | |||
[[Image:12-267-MonkeySaddleFlow.png|center|400px]] |
[[Image:12-267-MonkeySaddleFlow.png|center|400px]] |
||
'''Hint.''' "Monkey Saddle". |
'''Hint.''' "Monkey Saddle". |
||
{{Template:12-267:Dror/Students Divider}} |
|||
[http://imgur.com/a/53nSl#0 Solutions] [[User:Vsbdthrsh|Vsbdthrsh]] |
|||
Solutions to HW6: [[User:Dongwoo.kang|Dongwoo.kang]] |
|||
<gallery> |
|||
Image:12-267(HW6-1).jpg|page 1 |
|||
Image:12-267(HW6-2).jpg|page 2 |
|||
Image:12-267(HW6-3).jpg|page 3 |
|||
Image:12-267(HW6-4).jpg|page 4 |
|||
Image:12-267(HW6-5).jpg|page 5 |
|||
Image:12-267(HW6-6).jpg|page 6 |
|||
</gallery> |
|||
Latest revision as of 22:53, 9 December 2012
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This assignment is due in class on Friday November 9. Here and everywhere, neatness counts!! You may be brilliant and you may mean just the right things, but if your readers have a hard time deciphering your work they will give up and assume it is wrong.
Task 1. Draw the phase portraits for the following systems, near [math]\displaystyle{ (x,y)=(0,0) }[/math]:
- [math]\displaystyle{ \begin{cases} \dot{x}=2x+y \\ \dot{y}=-x+4y \end{cases} }[/math].
- [math]\displaystyle{ \begin{cases} \dot{x}=4x-5y \\ \dot{y}=4x-4y \end{cases} }[/math].
- [math]\displaystyle{ \begin{cases} \dot{x}=x-2y \\ \dot{y}=-2x+4y \end{cases} }[/math].
- [math]\displaystyle{ \begin{cases} \dot{x}=-x+y \\ \dot{y}=-5x+3y \end{cases} }[/math].
- [math]\displaystyle{ \begin{cases} \dot{x}=-5x+4y \\ \dot{y}=-8x+7y \end{cases} }[/math].
Task 2. Draw the phase portrait of the system
[math]\displaystyle{ \begin{cases}\dot{x}=17+x-9y+\sin(2-2x-y+xy)\\\dot{y}=7+2x-5y+\cos(x-1)\end{cases} }[/math]
near the point [math]\displaystyle{ (x,y)=(1,2) }[/math].
Task 3. Solve using diagonalization (one solution is enough):
- [math]\displaystyle{ v'=\begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix}v + \begin{pmatrix} e^t \\ t \end{pmatrix} }[/math].
- [math]\displaystyle{ v'=\begin{pmatrix} 2 & -5 \\ 1 & -2 \end{pmatrix}v + \begin{pmatrix} -\cos t \\ \sin t \end{pmatrix} }[/math].
Task 4. Assume [math]\displaystyle{ t\gt 0 }[/math]. For the following equation,
,
it is given that a solution of the homogeneous version is
Use "fundamental solutions" to find a solution of the full equation.
Task 5. (Not for grade). Find a quadratic differential equation whose phase portrait is as below.
Hint. "Monkey Saddle".
| Dror's notes above / Student's notes below |
Solutions to HW6: Dongwoo.kang