|
|
(12 intermediate revisions by 2 users not shown) |
Line 11: |
Line 11: |
|
Let <math>A</math> be a <math>n \times n</math> matrix and <math>B</math> be the matrix <math>A</math> with two '''adjacent''' rows interchanged. Then <math>det(A) = -det(B)</math>. |
|
Let <math>A</math> be a <math>n \times n</math> matrix and <math>B</math> be the matrix <math>A</math> with two '''adjacent''' rows interchanged. Then <math>det(A) = -det(B)</math>. |
|
|
|
|
⚫ |
All we need to show is that <math>det(A) + det(B) = 0</math>. Assume that <math>B</math> is the matrix <math>A</math> with row <math>i </math> of <math>A</math> interchanged with row <math>i + 1</math> of <math>A</math>. Since the determinant of a matrix with two identical rows is <math>0</math>, then: |
|
|
|
|
|
|
⚫ |
All we need to show is that <math>det(A) + det(B) = 0</math>. Assume that <math>B</math> is the matrix <math>A</math> with rows <math>i , i + 1</math> of <math>A</math> interchanged. Since the determinant of a matrix with two identical rows is <math>0</math>, then: |
|
|
|
|
|
|
|
|
:::::::<math>det(A) + det(B) =</math> |
|
|
|
|
|
|
|
⚫ |
:::::::<math>det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\end{pmatrix} =</math> |
|
|
|
|
⚫ |
:::::::<math> det(A) + det(B) = det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\end{pmatrix} =</math> |
|
|
|
|
|
|
:::::::<math>det\begin{pmatrix}...\\A_i\\A_i\\...\end{pmatrix} + det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\end{pmatrix}</math>. |
|
:::::::<math>det\begin{pmatrix}...\\A_i\\A_i\\...\end{pmatrix} + det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\end{pmatrix}</math>. |
|
|
|
|
|
|
|
|
|
Since the determinant is linear in each row, then: |
|
Since the determinant is linear in each row, then we continue where we left off: |
|
|
|
|
|
|
|
|
:::::::<math>det(A) + det(B) =</math> |
|
|
|
|
|
|
|
⚫ |
:::::::<math>det\begin{pmatrix}...\\A_i\\A_i\\...\end{pmatrix} + det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\end{pmatrix} = </math> |
|
|
|
|
|
|
|
⚫ |
:::::::<math>det\begin{pmatrix}...\\A_i\\A_i + A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i + A_{i + 1}\\...\end{pmatrix} = det\begin{pmatrix}...\\A_i + A_{i + 1}\\A_i + A_{i + 1}\\...\end{pmatrix} = 0</math>. |
|
|
|
|
|
|
|
|
Then <math>det(A) + det(B) = 0</math> and <math>det(A) = -det(B)</math>. The proof of the lemma is complete. |
|
|
|
|
|
|
|
|
For the proof of the theorem, assume that <math>B</math> is the matrix <math>A</math> with rows <math>i, j</math> of <math>A</math> interchanged and <math>i \neq j</math>. By '''Lemma 1''', we have the following: |
|
|
|
|
|
|
|
|
:::::::<math>det(A) =</math> |
|
|
|
|
|
|
|
|
:::::::<math>det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\\A_j\\...\end{pmatrix} = (-1)det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\\A_j\\...\end{pmatrix} = (-1)^{j - i}det\begin{pmatrix}...\\A_{i + 1}\\...\\A_j\\A_i\\...\end{pmatrix} =</math> |
|
|
|
|
|
|
|
|
|
|
|
:::::::<math>(-1)^{j - i}(-1)^{j - i - 1}det\begin{pmatrix}...\\A_j\\A_{i + 1}\\...\\A_i\\...\end{pmatrix} = (-1)^{2(j - i) - 1}det\begin{pmatrix}...\\A_j\\A_{i + 1}\\...\\A_i\\...\end{pmatrix} =</math> |
|
|
|
|
|
|
|
|
|
|
|
:::::::<math>(-1)^{- 1}det\begin{pmatrix}...\\A_j\\A_{i + 1}\\...\\A_i\\...\end{pmatrix} = (-1)det\begin{pmatrix}...\\A_j\\A_{i + 1}\\...\\A_i\\...\end{pmatrix} =</math> |
|
|
|
|
|
|
|
|
|
|
|
|
:::::::<math>-det(B)</math>. |
|
|
|
|
⚫ |
<math> det(A) + det(B) = det\begin{pmatrix}...\\A_i\\A_i\\...\end{pmatrix} + det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\end{pmatrix} = </math> |
|
|
|
|
|
|
|
Then the proof of the theorem is complete. |
⚫ |
<math>det\begin{pmatrix}...\\A_i\\A_i + A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i + A_{i + 1}\\...\end{pmatrix} = det\begin{pmatrix}...\\A_i + A_{i + 1}\\A_i + A_{i + 1}\\...\end{pmatrix} = 0</math>. |
|
|
|
|
|
|
==Nikita== |
|
==Nikita== |
|
|
==Scanned Tutorial Notes by [[User Boyang.wu|Boyang.wu]]== |
|
|
[[File:Tut.pdf]] |
Welcome to Math 240! (additions to this web site no longer count towards good deed points)
|
#
|
Week of...
|
Notes and Links
|
1
|
Sep 8
|
About This Class, What is this class about? (PDF, HTML), Monday, Wednesday
|
2
|
Sep 15
|
HW1, Monday, Wednesday, TheComplexField.pdf,HW1_solutions.pdf
|
3
|
Sep 22
|
HW2, Class Photo, Monday, Wednesday, HW2_solutions.pdf
|
4
|
Sep 29
|
HW3, Wednesday, Tutorial, HW3_solutions.pdf
|
5
|
Oct 6
|
HW4, Monday, Wednesday, Tutorial, HW4_solutions.pdf
|
6
|
Oct 13
|
No Monday class (Thanksgiving), Wednesday, Tutorial
|
7
|
Oct 20
|
HW5, Term Test at tutorials on Tuesday, Wednesday
|
8
|
Oct 27
|
HW6, Monday, Why LinAlg?, Wednesday, Tutorial
|
9
|
Nov 3
|
Monday is the last day to drop this class, HW7, Monday, Wednesday, Tutorial
|
10
|
Nov 10
|
HW8, Monday, Tutorial
|
11
|
Nov 17
|
Monday-Tuesday is UofT November break
|
12
|
Nov 24
|
HW9
|
13
|
Dec 1
|
Wednesday is a "makeup Monday"! End-of-Course Schedule, Tutorial
|
F
|
Dec 8
|
The Final Exam
|
Register of Good Deeds
|
Add your name / see who's in!
|
|
|
Boris
Theorem
Let be a matrix and be the matrix with two rows interchanged. Then . Boris decided to prove the following lemma first:
Lemma 1
Let be a matrix and be the matrix with two adjacent rows interchanged. Then .
All we need to show is that . Assume that is the matrix with rows of interchanged. Since the determinant of a matrix with two identical rows is , then:
- .
Since the determinant is linear in each row, then we continue where we left off:
- .
Then and . The proof of the lemma is complete.
For the proof of the theorem, assume that is the matrix with rows of interchanged and . By Lemma 1, we have the following:
- .
Then the proof of the theorem is complete.
Nikita
Scanned Tutorial Notes by Boyang.wu
File:Tut.pdf