14-240/Classnotes for Monday September 22: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
(7 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{14-240/Navigation}}
Polar coordinates:
Polar coordinates:
* <math>r \times e^{i\theta} = r \times cos\theta + i \times rsin\theta</math>
* <math>r \times e^{i\theta} = r \times cos\theta + i \times rsin\theta</math>
Line 5: Line 6:
The Fundamantal Theorem of Algebra:
The Fundamantal Theorem of Algebra:
<math>a_n \times z^{n} + a_n-1 \times z^{n-1} + \dots + a_0</math>
<math>a_n \times z^{n} + a_n-1 \times z^{n-1} + \dots + a_0</math>
where <math>a_i \in C and a_i != 0</math> has a soluion <math>z \in C</math>
where <math>a_i \in C </math>and<math> a_i != 0</math> has a soluion <math>z \in C</math>
In particular, <math>z^{2} - 1 = 0</math> has a solution.
In particular, <math>z^{2} - 1 = 0</math> has a solution.


Line 27: Line 28:
* <math>VS_7 : \forall a \in F, \forall x, y \in V, a(x + y) = ax + ay</math>.
* <math>VS_7 : \forall a \in F, \forall x, y \in V, a(x + y) = ax + ay</math>.
* <math>VS_8 : \forall a, b \in F, \forall x \in V, (a + b)x = ax + bx</math>.
* <math>VS_8 : \forall a, b \in F, \forall x \in V, (a + b)x = ax + bx</math>.

==Scanned Lecture Notes by [[User:AM|AM]]==

<gallery>
File:MAT240 Sept 22,14 (1 of 2).pdf|page 1
File:MAT240 Sept 22,14 (2 of 2).pdf|page 2
</gallery>
==Scanned Lecture Notes by [[User Boyang.wu|Boyang.wu]]==

[[File:W31.pdf]]

Latest revision as of 00:57, 8 December 2014

Polar coordinates:

The Fundamantal Theorem of Algebra: where and has a soluion In particular, has a solution.


  • Forces can multiple by a "scalar"(number).

No "multiplication" of forces.


Definition of Vector Space: A "Vector Space" over a field F is a set V with a special element and two binary operations:

s.t.

  • .
  • .
  • .
  • .
  • .
  • .
  • .
  • .

Scanned Lecture Notes by AM

Scanned Lecture Notes by Boyang.wu

File:W31.pdf