14-240/Classnotes for Monday September 22: Difference between revisions

From Drorbn
Jump to navigationJump to search
(Created page with "Polar coordinates: * <math>r \times \e^i\theta = r \times cos\theta + i \times rsin\theta</math> * <math>\r_1 \times \e^i\\theta_2 = \r_1 \times (cos\theta + sin\theta</math> ...")
 
 
(11 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{14-240/Navigation}}
Polar coordinates:
Polar coordinates:
* <math>r \times \e^i\theta = r \times cos\theta + i \times rsin\theta</math>
* <math>r \times e^{i\theta} = r \times cos\theta + i \times rsin\theta</math>
* <math>\r_1 \times \e^i\\theta_2 = \r_1 \times (cos\theta + sin\theta</math>
* <math>r_1 \times e^{i\theta_2} = r_1 \times (cos\theta + sin\theta</math>


The Fundamantal Theorem of Algebra:
The Fundamantal Theorem of Algebra:
<math>\a_n \times \z^n + \a_n-1 \times \z^n-1 + \dots + \a_0</math>
<math>a_n \times z^{n} + a_n-1 \times z^{n-1} + \dots + a_0</math>
where <math>\a_i \in C and \a_i != 0</math> has a soluion <math>z \in C</math>
where <math>a_i \in C </math>and<math> a_i != 0</math> has a soluion <math>z \in C</math>
In particular, <math>\z^2 - 1 = 0</math> has a solution.
In particular, <math>z^{2} - 1 = 0</math> has a solution.




Line 14: Line 15:


Definition of Vector Space:
Definition of Vector Space:
A "Vector Space" over a field F is a set V with a special element <math>\O_v \in V</math> and two binary operations:
A "Vector Space" over a field F is a set V with a special element <math>O_v \in V</math> and two binary operations:
* <math>+ : V \times V -> V</math>
* <math>+ : V \times V -> V</math>
* <math>\times : V \times V -> V</math>
* <math>\times : V \times V -> V</math>


s.t.
s.t.
* <math>\VS_1 : \forall x, y \in V, x + y = y + x</math>.
* <math>VS_1 : \forall x, y \in V, x + y = y + x</math>.
* <math>\VS_2 : \forall x, y, z \in V, x + (y + z) = (x + y) + z</math>.
* <math>VS_2 : \forall x, y, z \in V, x + (y + z) = (x + y) + z</math>.
* <math>\VS_3 : \forall x \in V, x + 0 = x</math>.
* <math>VS_3 : \forall x \in V, x + 0 = x</math>.
* <math>\VS_4 : \forall x \in V, \exists y \in V, x + y = 0</math>.
* <math>VS_4 : \forall x \in V, \exists y \in V, x + y = 0</math>.
* <math>\VS_5 : \forall x \in V, 1 \times x = x</math>.
* <math>VS_5 : \forall x \in V, 1 \times x = x</math>.
* <math>\VS_6 : \forall a, b \in F, \forall x \in V, a(bx) = (ab)x</math>.
* <math>VS_6 : \forall a, b \in F, \forall x \in V, a(bx) = (ab)x</math>.
* <math>\VS_7 : \forall a \in F, \forall x, y \in V, a(x + y) = ax + ay</math>.
* <math>VS_7 : \forall a \in F, \forall x, y \in V, a(x + y) = ax + ay</math>.
* <math>\VS_8 : \forall a, b \in F, \forall x \in V, (a + b)x = ax + bx</math>.
* <math>VS_8 : \forall a, b \in F, \forall x \in V, (a + b)x = ax + bx</math>.

==Scanned Lecture Notes by [[User:AM|AM]]==

<gallery>
File:MAT240 Sept 22,14 (1 of 2).pdf|page 1
File:MAT240 Sept 22,14 (2 of 2).pdf|page 2
</gallery>
==Scanned Lecture Notes by [[User Boyang.wu|Boyang.wu]]==

[[File:W31.pdf]]

Latest revision as of 00:57, 8 December 2014

Polar coordinates:

The Fundamantal Theorem of Algebra: where and has a soluion In particular, has a solution.


  • Forces can multiple by a "scalar"(number).

No "multiplication" of forces.


Definition of Vector Space: A "Vector Space" over a field F is a set V with a special element and two binary operations:

s.t.

  • .
  • .
  • .
  • .
  • .
  • .
  • .
  • .

Scanned Lecture Notes by AM

Scanned Lecture Notes by Boyang.wu

File:W31.pdf