14-240/Classnotes for Monday September 15: Difference between revisions

From Drorbn
Jump to navigationJump to search
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{14-240/Navigation}}
{{14-240/Navigation}}
==Definition of Subtraction and Division==
* Subtraction: if <math>a, b \in F, a - b = a + (-b)</math>.
* Division: if <math>a, b \in F, a / b = a \times b^{-1}</math>.

==Basic Properties of a Field (cont'd)==
==Basic Properties of a Field (cont'd)==


Line 58: Line 62:
</math>
</math>


==Scanned notes==
==Scanned Lecture Notes by [[User:AM|AM]]==

http://drorbn.net/images/c/cd/MAT_240_lecture_3_%281_of_2%29.pdf (Lecture 3 notes by AM part 1 of 2)
<gallery>
http://drorbn.net/images/6/6a/MAT240_lectuire_3_%282_of_2%29.pdf (Lecture 3 notes by AM part 2 of 2)
File:MAT 240 lecture 3 (1 of 2).pdf|page 1
File:MAT240 lectuire 3 (2 of 2).pdf|page 2
</gallery>
==Scanned Lecture Notes by [[User Boyang.wu|Boyang.wu]]==

[[File:W21.pdf]]

Latest revision as of 00:57, 8 December 2014

Definition of Subtraction and Division

  • Subtraction: if .
  • Division: if .

Basic Properties of a Field (cont'd)

8. , .

Proof of 8
By F3 ,
By F5 , ;
By F3 , ;
By Thm P1, .

9. s.t. ;

s.t. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \times b \neq 1} .
Proof of 9
By F3 , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \times b = 0 \neq 1} .

10. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-a) \times b = a \times (-b) = -(a \times b)} .

11. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-a) \times (-b) = a \times b} .

12. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \times b = 0 \iff a = 0} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b = 0} .

Proof of 12
<= :
By P8 , if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = 0} , then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \times b = 0 \times b = 0} ;
By P8 , if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b = 0} , then .
=> : Assume Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \times b = 0 } , if a = 0 we are done;
Otherwise , by P8 , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \neq 0 } and we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \times b = 0 = a \times 0} ;
by cancellation (P2) , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b = 0} .

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a + b) \times (a - b) = a^2 - b^2} .

Proof
By F5 , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a + b) \times (a - b) = a \times (a + (-b)) + b \times (a + (-b))}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = a^2 - b^2}

Theorem

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exists! \iota : \Z \rightarrow F} s.t.

1. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \iota(0) = 0 , \iota(1) = 1} ;
2. ;
3. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall m ,n \in \Z, \iota(m\times n) = \iota(m) \times \iota(n)} .
Examples

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \iota(2) = \iota(1+1) = \iota(1) + \iota(1) = 1 + 1;}

......

In F2:

Scanned Lecture Notes by AM

Scanned Lecture Notes by Boyang.wu

File:W21.pdf