14-240/Classnotes for Monday September 15: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{14-240/Navigation}}
{{14-240/Navigation}}
Definition:
==Definition of Subtraction and Division==
* Subtraction: if <math>a, b \in F, a - b = a + (-b)</math>.
* Subtraction: if <math>a, b \in F, a - b = a + (-b)</math>.
* Division: if <math>a, b \in F, a / b = a \times b^{-1}</math>.
* Division: if <math>a, b \in F, a / b = a \times b^{-1}</math>.


==Basic Properties of a Field (cont'd)==
Theorem:


* 8. <math>\forall a \in F</math>, <math>a \times 0 = 0</math>.
'''8.''' <math>\forall a \in F</math>, <math>a \times 0 = 0</math>.
;Proof of 8
*proof of 8: By F3 , <math>a \times 0 = a \times (0 + 0)</math>
By F5 , <math>a \times (0 + 0) = a \times 0 + a \times 0</math>;
:By F3 , <math>a \times 0 = a \times (0 + 0)</math>
By F3 , <math>a \times 0 = 0 + a \times 0</math>;
:By F5 , <math>a \times (0 + 0) = a \times 0 + a \times 0</math>;
By Thm P1,<math>0 = a \times 0</math>.
:By F3 , <math>a \times 0 = 0 + a \times 0</math>;
:By Thm P1, <math>0 = a \times 0</math>.
* 9. <math>\nexists b \in F</math> s.t. <math>0 \times b = 1</math>;
'''9.''' <math>\nexists b \in F</math> s.t. <math>0 \times b = 1</math>;
<math>\forall b \in F</math> s.t. <math>0 \times b \neq 1</math>.
:<math>\forall b \in F</math> s.t. <math>0 \times b \neq 1</math>.
;Proof of 9
proof of 9: By F3 , <math>\times b = 0 \neq 1</math>.
:By F3 , <math>\times b = 0 \neq 1</math>.

* 10. <math>(-a) \times b = a \times (-b) = -(a \times b)</math>.
'''10.''' <math>(-a) \times b = a \times (-b) = -(a \times b)</math>.
* 11. <math>(-a) \times (-b) = a \times b</math>.
'''11.''' <math>(-a) \times (-b) = a \times b</math>.
* 12. <math>a \times b = 0 \iff a = 0 or b = 0</math>.
'''12.''' <math>a \times b = 0 \iff a = 0</math> or <math>b = 0</math>.
;Proof of 12
proof of 12: <= : By P8 , if <math>a = 0</math> , then <math>a \times b = 0 \times b = 0</math>;
:'''<= :'''
By P8 , if <math>b = 0</math> , then <math>a \times b = a \times 0 = 0</math>.
=> : Assume <math>a \times b = 0 </math> , if a = 0 we are done;
:By P8 , if <math>a = 0</math> , then <math>a \times b = 0 \times b = 0</math>;
Otherwise , by P8 , <math>a \neq 0 </math> and we have <math>a \times b = 0 = a \times 0</math>;
:By P8 , if <math>b = 0</math> , then <math>a \times b = a \times 0 = 0</math>.
:'''=> :''' Assume <math>a \times b = 0 </math> , if a = 0 we are done;
by cancellation (P2) , <math>b = 0</math>.
:Otherwise , by P8 , <math>a \neq 0 </math> and we have <math>a \times b = 0 = a \times 0</math>;
:by cancellation (P2) , <math>b = 0</math>.
<math>(a + b) \times (a - b) = a^2 - b^2</math>.
<math>(a + b) \times (a - b) = a^2 - b^2</math>.
;Proof
proof: By F5 , <math>(a + b) \times (a - b) = a \times (a + (-b)) + b \times (a + (-b))</math>
<math>= a \times a + a \times (-b) + b \times a + (-b) \times b</math>
:By F5 , <math>(a + b) \times (a - b) = a \times (a + (-b)) + b \times (a + (-b))</math>
<math>= a^2 - b^2</math>
:<math>= a^2 - b^2</math>
Theorem :
<math>\exists! \iota : \Z \rightarrow F</math> s.t.
1. <math>\iota(0) = 0 , \iota(1) = 1</math>;
2. <math>\forall m ,n \in \Z, \iota(m+n) = \iota(m) + \iota(n)</math>;
3. <math>\forall m ,n \in \Z, \iota(m\times n) = \iota(m) \times \iota(n)</math>.


==Theorem==
<math>\iota(2) = \iota(1+1) = \iota(1) + \iota(1) = 1 + 1;</math>
<math>\iota(3) = \iota(2+1) = \iota(2) + \iota(1) = \iota(2) + 1;</math>
<math>\exists! \iota : \Z \rightarrow F</math> s.t.
:1. <math>\iota(0) = 0 , \iota(1) = 1</math>;
:2. <math>\forall m ,n \in \Z, \iota(m+n) = \iota(m) + \iota(n)</math>;
:3. <math>\forall m ,n \in \Z, \iota(m\times n) = \iota(m) \times \iota(n)</math>.


;Examples
......
<math>\iota(2) = \iota(1+1) = \iota(1) + \iota(1) = 1 + 1;</math>
<math>\iota(3) = \iota(2+1) = \iota(2) + \iota(1) = \iota(2) + 1;</math>

......
In F2:
In F2 , <math>27 ----> \iota(27) = \iota(26 + 1)</math>
<math>
<math>= \iota(26) + \iota(1)</math>
\begin{align}
<math>= \iota(26) + 1</math>
27 ----> \iota(27) &= \iota(26 + 1)\\
<math>= \iota(13 \times 2) + 1</math>
<math>= \iota(2) \times \iota(13) + 1</math>
&= \iota(26) + \iota(1)\\
&= \iota(26) + 1\\
<math>= (1 + 1) \times \iota(13) + 1</math>
&= \iota(13 \times 2) + 1\\
<math>= 0 \times \iota(13) + 1</math>
&= \iota(2) \times \iota(13) + 1\\
<math>= 1</math>
&= (1 + 1) \times \iota(13) + 1\\
http://drorbn.net/images/c/cd/MAT_240_lecture_3_%281_of_2%29.pdf (Lecture 3 notes by AM part 1 of 2)
&= 0 \times \iota(13) + 1\\
http://drorbn.net/images/6/6a/MAT240_lectuire_3_%282_of_2%29.pdf (Lecture 3 notes by AM part 2 of 2)
&= 1
\end{align}
</math>

==Scanned Lecture Notes by [[User:AM|AM]]==

<gallery>
File:MAT 240 lecture 3 (1 of 2).pdf|page 1
File:MAT240 lectuire 3 (2 of 2).pdf|page 2
</gallery>
==Scanned Lecture Notes by [[User Boyang.wu|Boyang.wu]]==

[[File:W21.pdf]]

Latest revision as of 00:57, 8 December 2014

Definition of Subtraction and Division

  • Subtraction: if .
  • Division: if .

Basic Properties of a Field (cont'd)

8. , .

Proof of 8
By F3 ,
By F5 , ;
By F3 , ;
By Thm P1, .

9. s.t. ;

s.t. .
Proof of 9
By F3 , .

10. .

11. .

12. or .

Proof of 12
<= :
By P8 , if , then ;
By P8 , if , then .
=> : Assume , if a = 0 we are done;
Otherwise , by P8 , and we have ;
by cancellation (P2) , .

.

Proof
By F5 ,

Theorem

s.t.

1. ;
2. ;
3. .
Examples

......

In F2:

Scanned Lecture Notes by AM

Scanned Lecture Notes by Boyang.wu

File:W21.pdf