14-240/Classnotes for Monday September 15: Difference between revisions
No edit summary |
|||
| (12 intermediate revisions by 5 users not shown) | |||
| Line 1: | Line 1: | ||
{{14-240/Navigation}} |
{{14-240/Navigation}} |
||
Definition |
==Definition of Subtraction and Division== |
||
* Subtraction: if <math>a, b \in F, a - b = a + (-b)</math>. |
* Subtraction: if <math>a, b \in F, a - b = a + (-b)</math>. |
||
* Division: if <math>a, b \in F, a / b = a \times b^{-1}</math>. |
* Division: if <math>a, b \in F, a / b = a \times b^{-1}</math>. |
||
==Basic Properties of a Field (cont'd)== |
|||
| ⚫ | |||
'''8.''' <math>\forall a \in F</math>, <math>a \times 0 = 0</math>. |
|||
;Proof of 8 |
|||
| ⚫ | |||
:By F3 , <math>a \times 0 = a \times (0 + 0)</math> |
|||
:By F5 , <math>a \times (0 + 0) = a \times 0 + a \times 0</math>; |
|||
:By F3 , <math>a \times 0 = 0 + a \times 0</math>; |
|||
:By Thm P1, <math>0 = a \times 0</math>. |
|||
'''9.''' <math>\nexists b \in F</math> s.t. <math>0 \times b = 1</math>; |
|||
:<math>\forall b \in F</math> s.t. <math>0 \times b \neq 1</math>. |
|||
;Proof of 9 |
|||
proof of 9: By F3 , <math>\times b = 0 \neq 1</math>. |
|||
| ⚫ | |||
'''10.''' <math>(-a) \times b = a \times (-b) = -(a \times b)</math>. |
|||
'''11.''' <math>(-a) \times (-b) = a \times b</math>. |
|||
'''12.''' <math>a \times b = 0 \iff a = 0</math> or <math>b = 0</math>. |
|||
;Proof of 12 |
|||
| ⚫ | |||
:'''<= :''' |
|||
By P8 , if <math>b = 0</math> , then <math>a \times b = a \times 0 = 0</math>. |
|||
:By P8 , if <math>a = 0</math> , then <math>a \times b = 0 \times b = 0</math>; |
|||
:By P8 , if <math>b = 0</math> , then <math>a \times b = a \times 0 = 0</math>. |
|||
:'''=> :''' Assume <math>a \times b = 0 </math> , if a = 0 we are done; |
|||
| ⚫ | |||
| ⚫ | |||
:by cancellation (P2) , <math>b = 0</math>. |
|||
<math>(a + b) \times (a - b) = a^2 - b^2</math>. |
<math>(a + b) \times (a - b) = a^2 - b^2</math>. |
||
;Proof |
|||
proof: By F5 , <math>(a + b) \times (a - b) = a \times (a + (-b)) + b \times (a + (-b))</math> |
|||
:By F5 , <math>(a + b) \times (a - b) = a \times (a + (-b)) + b \times (a + (-b))</math> |
|||
:<math>= a^2 - b^2</math> |
|||
Theorem : |
|||
<math>\exists! \iota : \Z \rightarrow F</math> s.t. |
|||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
<math>\exists! \iota : \Z \rightarrow F</math> s.t. |
|||
| ⚫ | |||
...... |
|||
| ⚫ | |||
| ⚫ | |||
;Examples |
|||
| ⚫ | |||
<math>\iota(3) = \iota(2+1) = \iota(2) + \iota(1) = \iota(2) + 1;</math> |
|||
| ⚫ | |||
In F2: |
|||
| ⚫ | |||
<math> |
|||
<math>= \iota(26) + \iota(1)</math> |
|||
\begin{align} |
|||
<math>= \iota(26) + 1</math> |
|||
| ⚫ | |||
<math>= \iota(13 \times 2) + 1</math> |
|||
&= \iota(26) + \iota(1)\\ |
|||
&= \iota(26) + 1\\ |
|||
<math>= (1 + 1) \times \iota(13) + 1</math> |
|||
&= \iota(13 \times 2) + 1\\ |
|||
<math>= 0 \times \iota(13) + 1</math> |
|||
&= \iota(2) \times \iota(13) + 1\\ |
|||
<math>= 1</math> |
|||
&= (1 + 1) \times \iota(13) + 1\\ |
|||
&= 0 \times \iota(13) + 1\\ |
|||
&= 1 |
|||
\end{align} |
|||
</math> |
|||
==Scanned Lecture Notes by [[User:AM|AM]]== |
|||
<gallery> |
|||
File:MAT 240 lecture 3 (1 of 2).pdf|page 1 |
|||
File:MAT240 lectuire 3 (2 of 2).pdf|page 2 |
|||
</gallery> |
|||
==Scanned Lecture Notes by [[User Boyang.wu|Boyang.wu]]== |
|||
[[File:W21.pdf]] |
|||
Latest revision as of 00:57, 8 December 2014
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition of Subtraction and Division
- Subtraction: if .
- Division: if .
Basic Properties of a Field (cont'd)
8. , .
- Proof of 8
- By F3 ,
- By F5 , ;
- By F3 , ;
- By Thm P1, .
9. s.t. ;
- s.t. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \times b \neq 1} .
- Proof of 9
- By F3 , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \times b = 0 \neq 1} .
10. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-a) \times b = a \times (-b) = -(a \times b)} .
11. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-a) \times (-b) = a \times b} .
12. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \times b = 0 \iff a = 0} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b = 0} .
- Proof of 12
- <= :
- By P8 , if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = 0} , then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \times b = 0 \times b = 0} ;
- By P8 , if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b = 0} , then .
- => : Assume Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \times b = 0 } , if a = 0 we are done;
- Otherwise , by P8 , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \neq 0 } and we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \times b = 0 = a \times 0} ;
- by cancellation (P2) , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b = 0} .
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a + b) \times (a - b) = a^2 - b^2} .
- Proof
- By F5 , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a + b) \times (a - b) = a \times (a + (-b)) + b \times (a + (-b))}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = a^2 - b^2}
Theorem
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exists! \iota : \Z \rightarrow F} s.t.
- 1. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \iota(0) = 0 , \iota(1) = 1} ;
- 2. ;
- 3. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall m ,n \in \Z, \iota(m\times n) = \iota(m) \times \iota(n)} .
- Examples
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \iota(2) = \iota(1+1) = \iota(1) + \iota(1) = 1 + 1;}
......
In F2: