14-240/Tutorial-November11: Difference between revisions
From Drorbn
Jump to navigationJump to search
Line 3: | Line 3: | ||
==Boris== |
==Boris== |
||
====Background==== |
|||
====Coordinate and Matrix Representation Problems==== |
|||
Let <math>V</math> be a finite dimensional vector space over a field <math>F</math>, <math>B = \{v_1, v_2, v_3, ..., v_n\}</math> be an ordered basis of <math>V</math> and <math>v \in V</math>. Then <math>v = \displaystyle\sum_{i=1}^{n} c_iv_i</math> where <math>c_i \in F</math>. Then the '''coordinate vector''' of <math>v</math> relative to <math>B</math>is the column vector <math> \begin{pmatrix}c_1\\c_2\\c_3\\...\\c_n\end{pmatrix}</math>. |
Let <math>V</math> be a finite dimensional vector space over a field <math>F</math>, <math>B = \{v_1, v_2, v_3, ..., v_n\}</math> be an ordered basis of <math>V</math> and <math>v \in V</math>. Then <math>v = \displaystyle\sum_{i=1}^{n} c_iv_i</math> where <math>c_i \in F</math>. Then the '''coordinate vector''' of <math>v</math> relative to <math>B</math> is the column vector <math> \begin{pmatrix}c_1\\c_2\\c_3\\...\\c_n\end{pmatrix}</math>. |
||
Line 11: | Line 11: | ||
Boris's Problems |
====Boris's Problems==== |
||
Let <math> |
Let <math>B</math> be the standard ordered basis of <math>P_n(F)</math> and <math>K</math> be the standard ordered basis of <math>F</math>. |
||
'''Q1'''. What is the '''coordinate vector''' of <math>x^2 + x^5</math> relative to <math> |
'''Q1'''. What is the '''coordinate vector''' of <math>x^2 + x^5</math> relative to <math>B</math>? |
||
'''Q2'''. Let <math>T:P_n \to F</math> be a linear transformation that is defined by <math>T(f) = f(0)</math>. What is the '''matrix representation''' of <math>T</math> in <math> |
'''Q2'''. Let <math>T:P_n \to F</math> be a linear transformation that is defined by <math>T(f(x)) = f(0)</math>. What is the '''matrix representation''' of <math>T</math> in <math>B, K</math>? |
Revision as of 19:08, 29 November 2014
|
Boris
Background
Let be a finite dimensional vector space over a field , be an ordered basis of and . Then where . Then the coordinate vector of relative to is the column vector .
Let be a finite dimensional vector space over the same field and be an ordered basis of . Define a linear transformation . Then where . Then the matrix representation of in the ordered bases is the matrix .
Boris's Problems
Let be the standard ordered basis of and be the standard ordered basis of .
Q1. What is the coordinate vector of relative to ?
Q2. Let be a linear transformation that is defined by . What is the matrix representation of in ?