14-240/Tutorial-November11: Difference between revisions

From Drorbn
Jump to navigationJump to search
Line 4: Line 4:


====Coordinate and Matrix Representation Problems====
====Coordinate and Matrix Representation Problems====

Recall:


Let <math>V</math> be a finite dimensional vector space over a field <math>F</math>, <math>B = \{v_1, v_2, v_3, ..., v_n\}</math> be an ordered basis of <math>V</math> and <math>v \in V</math>. Then <math>v = \displaystyle\sum_{i=1}^{n} c_iv_i</math> where <math>c_i \in F</math>. Then the '''coordinate representation''' of <math>v</math> is the column vector <math> \begin{pmatrix}c_1\\c_2\\c_3\\...\\c_n\end{pmatrix}</math>.
Let <math>V</math> be a finite dimensional vector space over a field <math>F</math>, <math>B = \{v_1, v_2, v_3, ..., v_n\}</math> be an ordered basis of <math>V</math> and <math>v \in V</math>. Then <math>v = \displaystyle\sum_{i=1}^{n} c_iv_i</math> where <math>c_i \in F</math>. Then the '''coordinate representation''' of <math>v</math> is the column vector <math> \begin{pmatrix}c_1\\c_2\\c_3\\...\\c_n\end{pmatrix}</math>.

Revision as of 18:52, 29 November 2014

Boris

Coordinate and Matrix Representation Problems

Let be a finite dimensional vector space over a field , be an ordered basis of and . Then where . Then the coordinate representation of is the column vector .


Let be a finite dimensional vector space over the same field and be an ordered basis of . Define a linear transformation . Then where . Then the matrix representation of in the ordered bases is the matrix .