|
|
Line 7: |
Line 7: |
|
Recall: |
|
Recall: |
|
|
|
|
|
Let <math>V</math> be a finite dimensional vector space over a field <math>F</math>. Let <math>B = {v_1, v_2, v_3, ..., v_n}</math> be an ordered basis of <math>V</math> and <math>v \in V</math>. Then <math>v = \displaystyle\sum_{i=1}^{n} c_iv_i</math> where <math>c_i \in F</math>. Then the '''coordinate representation''' of <math>v</math> is defined by <math>[v]_B = </math>. |
|
Let <math>V</math> be a finite dimensional vector space over a field <math>F</math>, <math>B = {v_1, v_2, v_3, ..., v_n}</math> be an ordered basis of <math>V</math> and <math>v \in V</math>. Then <math>v = \displaystyle\sum_{i=1}^{n} c_iv_i</math> where <math>c_i \in F</math>. Then the '''coordinate representation''' of <math>v</math> is the column vector \begin{pmatrix}c_1\\c_2\\c_3\\.\\c_n\end{pmatrix}</math>. |
|
|
|
|
|
Let <math>W</math> be a finite dimensional vector space over the same field <math>F</math>, <math>B = {v_1, v_2, v_3, ..., v_m}</math> be an ordered basis of <math>W</math>. Define a linear transformation <math>T:V \to W</math>. Then the matrix representation of <math>T</math> in the ordered bases <math>B, K</math> is the matrix |
Revision as of 18:42, 29 November 2014
Welcome to Math 240! (additions to this web site no longer count towards good deed points)
|
#
|
Week of...
|
Notes and Links
|
1
|
Sep 8
|
About This Class, What is this class about? (PDF, HTML), Monday, Wednesday
|
2
|
Sep 15
|
HW1, Monday, Wednesday, TheComplexField.pdf,HW1_solutions.pdf
|
3
|
Sep 22
|
HW2, Class Photo, Monday, Wednesday, HW2_solutions.pdf
|
4
|
Sep 29
|
HW3, Wednesday, Tutorial, HW3_solutions.pdf
|
5
|
Oct 6
|
HW4, Monday, Wednesday, Tutorial, HW4_solutions.pdf
|
6
|
Oct 13
|
No Monday class (Thanksgiving), Wednesday, Tutorial
|
7
|
Oct 20
|
HW5, Term Test at tutorials on Tuesday, Wednesday
|
8
|
Oct 27
|
HW6, Monday, Why LinAlg?, Wednesday, Tutorial
|
9
|
Nov 3
|
Monday is the last day to drop this class, HW7, Monday, Wednesday, Tutorial
|
10
|
Nov 10
|
HW8, Monday, Tutorial
|
11
|
Nov 17
|
Monday-Tuesday is UofT November break
|
12
|
Nov 24
|
HW9
|
13
|
Dec 1
|
Wednesday is a "makeup Monday"! End-of-Course Schedule, Tutorial
|
F
|
Dec 8
|
The Final Exam
|
Register of Good Deeds
|
Add your name / see who's in!
|
|
|
Boris
Coordinate and Matrix Representation Problems
Recall:
Let be a finite dimensional vector space over a field , be an ordered basis of and . Then where . Then the coordinate representation of is the column vector \begin{pmatrix}c_1\\c_2\\c_3\\.\\c_n\end{pmatrix}</math>.
Let be a finite dimensional vector space over the same field , be an ordered basis of . Define a linear transformation . Then the matrix representation of in the ordered bases is the matrix