14-240/Tutorial-November11: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
Line 7: Line 7:
Recall:
Recall:


Let <math>V</math> be a finite dimensional vector space over a field <math>F</math>. Let <math>B = {v_1, v_2, v_3, ..., v_n}</math> be an ordered basis of <math>V</math> and <math>v \in V</math>. Then <math>v = \displaystyle\sum_{i=1}^{n} c_iv_i</math> where <math>c_i \in F</math>. Then the '''coordinate representation''' of <math>v</math> is defined by <math>[v]_B = </math>.
Let <math>V</math> be a finite dimensional vector space over a field <math>F</math>, <math>B = {v_1, v_2, v_3, ..., v_n}</math> be an ordered basis of <math>V</math> and <math>v \in V</math>. Then <math>v = \displaystyle\sum_{i=1}^{n} c_iv_i</math> where <math>c_i \in F</math>. Then the '''coordinate representation''' of <math>v</math> is the column vector \begin{pmatrix}c_1\\c_2\\c_3\\.\\c_n\end{pmatrix}</math>.

Let <math>W</math> be a finite dimensional vector space over the same field <math>F</math>, <math>B = {v_1, v_2, v_3, ..., v_m}</math> be an ordered basis of <math>W</math>. Define a linear transformation <math>T:V \to W</math>. Then the matrix representation of <math>T</math> in the ordered bases <math>B, K</math> is the matrix

Revision as of 18:42, 29 November 2014

Boris

Coordinate and Matrix Representation Problems

Recall:

Let be a finite dimensional vector space over a field , be an ordered basis of and . Then where . Then the coordinate representation of is the column vector \begin{pmatrix}c_1\\c_2\\c_3\\.\\c_n\end{pmatrix}</math>.

Let be a finite dimensional vector space over the same field , be an ordered basis of . Define a linear transformation . Then the matrix representation of in the ordered bases is the matrix