14-240/Classnotes for Monday September 22: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
Line 25: Line 25:
* <math>VS_4 : \forall x \in V, \exists y \in V, x + y = 0</math>.
* <math>VS_4 : \forall x \in V, \exists y \in V, x + y = 0</math>.
* <math>VS_5 : \forall x \in V, 1 \times x = x</math>.
* <math>VS_5 : \forall x \in V, 1 \times x = x</math>.

http://drorbn.net/skins/common/images/icons/fileicon-pdf.png
* <math>VS_6 : \forall a, b \in F, \forall x \in V, a(bx) = (ab)x</math>.
* <math>VS_6 : \forall a, b \in F, \forall x \in V, a(bx) = (ab)x</math>.
* <math>VS_7 : \forall a \in F, \forall x, y \in V, a(x + y) = ax + ay</math>.
* <math>VS_7 : \forall a \in F, \forall x, y \in V, a(x + y) = ax + ay</math>.
* <math>VS_8 : \forall a, b \in F, \forall x \in V, (a + b)x = ax + bx</math>.
* <math>VS_8 : \forall a, b \in F, \forall x \in V, (a + b)x = ax + bx</math>.


http://drorbn.net/images/f/f0/MAT240_Sept_22%2C14_%281_of_2%29.pdf

Revision as of 07:49, 25 September 2014

Polar coordinates:

The Fundamantal Theorem of Algebra: where and has a soluion In particular, has a solution.


  • Forces can multiple by a "scalar"(number).

No "multiplication" of forces.


Definition of Vector Space: A "Vector Space" over a field F is a set V with a special element and two binary operations:

s.t.

  • .
  • .
  • .
  • .
  • .
  • .
  • .
  • .


http://drorbn.net/images/f/f0/MAT240_Sept_22%2C14_%281_of_2%29.pdf