12-267/Homework Assignment 7: Difference between revisions
No edit summary |
No edit summary |
||
| (One intermediate revision by one other user not shown) | |||
| Line 1: | Line 1: | ||
{{12-267/Navigation}} |
{{12-267/Navigation}} |
||
This assignment is due in class on |
This assignment is due in class on <span style="color: red;">Friday November 23</span>. Here and everywhere, '''neatness counts!!''' You may be brilliant and you may mean just the right things, but if your readers have a hard time deciphering your work they will give up and assume it is wrong. |
||
'''Task 1.''' Find the radius of convergence of the series |
'''Task 1.''' Find the radius of convergence of the series |
||
| Line 20: | Line 20: | ||
# Find a differential equation satisfied by <math>y(x):=\sum_{n=0}^\infty\begin{pmatrix}2n\\n\end{pmatrix}x^n</math>. |
# Find a differential equation satisfied by <math>y(x):=\sum_{n=0}^\infty\begin{pmatrix}2n\\n\end{pmatrix}x^n</math>. |
||
# Solve that equation to determine <math>y(x)</math> in general, and <math>\sum_{n=0}^\infty\frac{1}{5^n}\begin{pmatrix}2n\\n\end{pmatrix}</math> in particular. |
# Solve that equation to determine <math>y(x)</math> in general, and <math>\sum_{n=0}^\infty\frac{1}{5^n}\begin{pmatrix}2n\\n\end{pmatrix}</math> in particular. |
||
{{Template:12-267:Dror/Students Divider}} |
|||
[http://imgur.com/a/eeTWI#0 Solutions] [[User:Vsbdthrsh|Vsbdthrsh]] |
|||
Latest revision as of 21:11, 30 November 2012
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This assignment is due in class on Friday November 23. Here and everywhere, neatness counts!! You may be brilliant and you may mean just the right things, but if your readers have a hard time deciphering your work they will give up and assume it is wrong.
Task 1. Find the radius of convergence of the series
- [math]\displaystyle{ \sum_{n=0}^\infty 2^nx^n }[/math].
- [math]\displaystyle{ \sum_{n=0}^\infty\frac{n}{2^n}x^n }[/math].
- [math]\displaystyle{ \sum_{n=0}^\infty\frac{(2x+1)^n}{n^2} }[/math] near [math]\displaystyle{ x=-\frac12 }[/math].
Task 2. Solve the equation [math]\displaystyle{ (y')^2=1-y^2 }[/math] with [math]\displaystyle{ y(0)=0 }[/math] and [math]\displaystyle{ y'(0)\gt 0 }[/math] using power series up to and including the coefficient of [math]\displaystyle{ x^5 }[/math]. Then compare your result with the Taylor expansion of the exact solution.
Task 3. Find the recurrence relation defining the power series solutions of the following equations:
- [math]\displaystyle{ y''-xy'-y=0 }[/math] with [math]\displaystyle{ y(0)=1 }[/math] and [math]\displaystyle{ y'(0)=0 }[/math].
- [math]\displaystyle{ y''-xy'-y=0 }[/math] with [math]\displaystyle{ y(1)=1 }[/math] and [math]\displaystyle{ y'(1)=0 }[/math].
- [math]\displaystyle{ (1-x)y''+y=0 }[/math] with [math]\displaystyle{ y(0)=0 }[/math] and [math]\displaystyle{ y'(0)=1 }[/math].
Task 4. In view of the theorem about convergence of power series solutions (Fuchs' theorem), give a lower bound on the radius of convergence of the series solution of the equation [math]\displaystyle{ (x^2-2x-3)y''+xy'+4y=0 }[/math] near [math]\displaystyle{ x=0 }[/math].
Task 5.
- Find a recurrence relation satisfied by [math]\displaystyle{ a_n:=\begin{pmatrix}2n\\n\end{pmatrix} }[/math].
- Find a differential equation satisfied by [math]\displaystyle{ y(x):=\sum_{n=0}^\infty\begin{pmatrix}2n\\n\end{pmatrix}x^n }[/math].
- Solve that equation to determine [math]\displaystyle{ y(x) }[/math] in general, and [math]\displaystyle{ \sum_{n=0}^\infty\frac{1}{5^n}\begin{pmatrix}2n\\n\end{pmatrix} }[/math] in particular.
| Dror's notes above / Student's notes below |