12-267/Homework Assignment 2: Difference between revisions
No edit summary |
Mathstudent (talk | contribs) mNo edit summary |
||
| Line 23: | Line 23: | ||
'''Task 4.''' Find an example of a non-differentiable function which is nevertheless Lipschitz. |
'''Task 4.''' Find an example of a non-differentiable function which is nevertheless Lipschitz. |
||
[http://drorbn.net/index.php?title=Image:005.jpg Solution to HW2, page 1] [[User:Mathstudent|Mathstudent]] |
|||
[http://drorbn.net/index.php?title=Image:006.jpg Solution to HW2, page 2] [[User:Mathstudent|Mathstudent]] |
|||
[http://drorbn.net/index.php?title=Image:007.jpg Solution to HW2, page 3] [[User:Mathstudent|Mathstudent]] |
|||
[http://drorbn.net/index.php?title=Image:008.jpg Solution to HW2, page 4] [[User:Mathstudent|Mathstudent]] |
|||
[http://drorbn.net/index.php?title=Image:009.jpg Solution to HW2, page 5] [[User:Mathstudent|Mathstudent]] |
|||
[http://drorbn.net/index.php?title=Image:010.jpg Solution to HW2, page 6] [[User:Mathstudent|Mathstudent]] |
|||
[http://drorbn.net/index.php?title=Image:011.jpg Solution to HW2, page 6] [[User:Mathstudent|Mathstudent]] |
|||
Revision as of 18:26, 23 October 2012
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This assignment is due at the tutorial on Tuesday October 2. Here and everywhere, neatness counts!! You may be brilliant and you may mean just the right things, but if the your readers will be having hard time deciphering your work they will give up and assume it is wrong.
Task 0. Identify yourself in the Class Photo!
Task 1. Solve the following differential equations:
- [math]\displaystyle{ x^2y^3+x(1+y^2)y'=0 }[/math] (hint: try [math]\displaystyle{ \mu=x^\alpha y^\beta }[/math]).
- [math]\displaystyle{ dx+(\frac{x}{y}-\sin y)dy=0 }[/math].
- [math]\displaystyle{ (x^2+3xy+y^2)dx-x^2dy=0 }[/math].
- [math]\displaystyle{ \frac{dy}{dx}=\frac{2y-x+5}{2x-y-4} }[/math] (hint: consider trying [math]\displaystyle{ x_1=x+\alpha }[/math] and [math]\displaystyle{ y_1=y+\beta }[/math] for good [math]\displaystyle{ \alpha }[/math], [math]\displaystyle{ \beta }[/math]).
- [math]\displaystyle{ y'=\frac{y^3}{1-2xy^2} }[/math] with [math]\displaystyle{ y(0)=1 }[/math].
- [math]\displaystyle{ \frac{dy}{dx}=\frac{2y+\sqrt{x^2-y^2}}{2x} }[/math].
Task 2. Let [math]\displaystyle{ M }[/math] and [math]\displaystyle{ N }[/math] be differentiable functions of [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math].
- Show that if [math]\displaystyle{ \frac{N_x-M_y}{xM-yN} }[/math] depends only on [math]\displaystyle{ xy }[/math], then the differential equation [math]\displaystyle{ Mdx+Ndy=0 }[/math] has an integrating factor of the form [math]\displaystyle{ \mu(xy) }[/math], where [math]\displaystyle{ \mu }[/math] is a function of a single variable.
- Find a condition on [math]\displaystyle{ M }[/math] and [math]\displaystyle{ N }[/math] that would imply that the differential equation [math]\displaystyle{ Mdx+Ndy=0 }[/math] would have an integrating factor of the form [math]\displaystyle{ \mu(x+y) }[/math], where [math]\displaystyle{ \mu }[/math] is a function of a single variable.
Task 3. The equation [math]\displaystyle{ y'+p(x)y=q(x)y^n }[/math] is called a "Bernoulli Equation".
- Explain why you already know how to solve the Bernoulli equation when [math]\displaystyle{ n=0 }[/math] and when [math]\displaystyle{ n=1 }[/math].
- Show that if [math]\displaystyle{ n\neq0,1 }[/math], then the substitution [math]\displaystyle{ v=y^{1-n} }[/math] reduces the Bernoulli equation to an equation you already know how to solve.
- Solve the equation [math]\displaystyle{ x^2y'+2xy-y^3=0 }[/math] (for [math]\displaystyle{ x\gt 0 }[/math]).
Task 4. Find an example of a non-differentiable function which is nevertheless Lipschitz.
Solution to HW2, page 1 Mathstudent Solution to HW2, page 2 Mathstudent Solution to HW2, page 3 Mathstudent Solution to HW2, page 4 Mathstudent Solution to HW2, page 5 Mathstudent Solution to HW2, page 6 Mathstudent Solution to HW2, page 6 Mathstudent