|
|
Line 4: |
Line 4: |
|
===Solving the complicated integral in the Brachistochroe integral=== |
|
===Solving the complicated integral in the Brachistochroe integral=== |
|
|
|
|
|
integral sqrt((d-y)/y) dy
|
|
<math>\int \sqrt{\frac{d-y}{y}} dy </math> |
|
|
|
|
= integral sqrt(d y-y^2)/y dy |
|
|
For the integrand sqrt(d y-y^2)/y, complete the square:
|
|
<math> = \int \sqrt{\frac{d y-y^2}{y}} dy </math> |
|
|
|
|
= integral sqrt(d^2/4-(y-d/2)^2)/y dy |
|
|
|
Complete the square in the integrand: |
⚫ |
For the integrand sqrt( d^2 /4-(y-d/2)^2 )/ y, substitute u = y-d/2 and du = dy: |
|
|
|
|
|
= integral (2 sqrt(d^2/4-u^2))/(d+2 u) du |
|
|
|
<math> = \int \sqrt{\frac{\frac{d^2}{4} - (y - \frac{d}{2})^2}{y}} </math> |
|
= 2 integral sqrt(d^2/4-u^2)/(d+2 u) du |
|
|
|
|
⚫ |
For the integrand sqrt(d^2/4-u^2)/(d+2 u), (assuming all variables are positive ) substitute u = 1 /2 d sin (s ) and du = 1 /2 d cos (s ) ds. Then sqrt (d^2 /4-u^2 ) = sqrt (d^2 /4-1 /4 d^2 sin^2 (s )) = 1 /2 d cos (s ) and s = sin^ (-1 )((2 u)/ d): |
|
|
|
Substitute <math>u = y-\frac{d}{2}</math> and <math> du = dy </math>: |
|
= d^2/2 integral (cos^2(s))/(d sin(s)+d) ds |
|
|
|
|
⚫ |
For the integrand (cos^2(s))/(d sin(s)+d), substitute p = tan (s/ 2) and dp = 1 /2 sec^2 (s /2 ) ds. Then transform the integrand using the substitutions sin (s ) = (2 p)/(p^2+1 ), cos (s ) = (1-p^2 )/(p^2+1 ) and ds = (2 dp )/(p^2+1 ): |
|
|
|
<math> = \int 2 \sqrt{\frac{\frac{d^2}{4} - u^2}{d+2 u}} du </math> |
|
= d^2/2 integral (2 (1-p^2)^2)/((p^2+1)^3 ((2 d p)/(p^2+1)+d)) dp |
|
|
|
|
⚫ |
Simplify the integrand (2 (1-p^2)^2 )/((p^2+1)^3 ( (2 d p )/(p^2+1 )+d) ) to get (2 (p-1)^2 )/(d p^4+2 d p^2+d ): |
|
|
⚫ |
Assuming all variables are positive , substitute <math>u = \frac{1 }{2 } d \sin {s }</math> and <math>du = \frac{1 }{2 } d \cos {s } ds </math>. Then <math>\sqrt {\frac{d^2 }{4 } - u^2 } = \sqrt {\frac{d^2 }{4 } - \frac{1 }{4 } d^2 \sin^2 {s }} = \frac{1 }{2 } d \cos {s }</math> and <math>s = \sin^ {-1 }{\frac{2u}{d}}</ math>: |
⚫ |
= d^ 2/2 integral (2 (p-1)^2 )/(d p^4+2 d p^2+d ) dp |
|
|
|
|
⚫ |
= d^2 integral (p-1)^2 /(d p^4+2 d p^2+d ) dp |
|
|
|
<math> = \frac{d^2}{2} \int \frac{\cos^2{s}}{d \sin{s} + d} ds</math> |
⚫ |
= d^2 integral (p-1)^2 /(d (p^2+1)^2 ) dp |
|
|
|
|
⚫ |
= d integral (p-1)^2 /(p^2+1)^2 dp |
|
|
⚫ |
For the integrand substitute <math> p= \tan {\frac{s }{2}}</ math> and <math>dp = \frac{1 }{2 } \sec^2 {\frac{s }{2 }} ds </math>. Then transform the integrand using the substitutions <math>\sin {s } = \frac{2p}{p^2 + 1 }</math>, <math>\cos {s } = \frac{1-p^2 }{p^2 + 1 }</math> and <math>ds = \frac{2 dp }{p^2 + 1 }</math>: |
⚫ |
For the integrand (p-1)^2 /(p^2+1)^2 , use partial fractions: |
|
|
|
|
⚫ |
= d integral (1 /(p^2+1 )- (2 p )/(p^2+1)^2) dp |
|
|
= d integral 1/(p^2+1) dp-2 d integral p/(p^2+1)^2 dp
|
|
<math> = \frac{d^2}{2} \int 2 \frac{(1-p^2)^2}{(p^2 + 1)^3 (\frac{2 d p}{p^2 + 1} + d)} dp</math> |
|
|
|
|
For the integrand p/(p^2+1)^2, substitute w = p^2+1 and dw = 2 p dp: |
|
|
⚫ |
Simplify the integrand <math>\frac{2(1-p^2)^2 }{(p^2 + 1)^3 ( \frac{2 d p }{p^2 + 1 } + d) }</math> to get <math>\frac{2 (p-1)^2 }{d p^4 + 2 d p^2 + d }</math>: |
|
= d integral 1/(p^2+1) dp-d integral 1/w^2 dw |
|
|
|
|
⚫ |
The integral of 1 /(p^2+1 ) is tan^ (-1 )(p ): |
|
|
⚫ |
<math> = \frac{d^2 }{2} \int \frac{2(p-1)^2 }{d p^4+2 d p^2+d } dp </math> |
|
= d tan^(-1)(p)-d integral 1/w^2 dw |
|
|
|
|
⚫ |
= d tan^ (-1 )(p )+d /w+constant |
|
|
⚫ |
<math> = d^2 \int \frac{(p-1)^2 }{d p^4+2 d p^2+d } dp </math> |
⚫ |
Substitute back for w = p^2+1: |
|
|
|
|
⚫ |
= (d ((p^2+1) tan^ (-1 )(p )+1) )/(p^2+1 )+C |
|
|
⚫ |
<math> = d^2 \int \frac{(p-1)^2 }{d (p^2+1)^2 } dp </math> |
⚫ |
Substitute back for p = tan (s /2 ): |
|
|
|
|
⚫ |
= 1 /2 d (cos (s )+2 tan^ (-1 )(tan (s /2 ))+1)+C |
|
|
⚫ |
<math> = d \int \frac{(p-1)^2 }{(p^2+1)^2 } dp </math> |
⚫ |
Substitute back for s = sin^ (-1 )((2 u )/d ): |
|
|
|
|
⚫ |
= 1/2 (sqrt (d^2-4 u^2 )+2 d tan^ (-1 )((2 u )/(d (sqrt (1- (4 u^2 )/d^2 )+1) ))+d)+C |
|
|
⚫ |
For the integrand <math>\frac{(p-1)^2 }{(p^2+1)^2 }</math> use partial fractions: |
⚫ |
Substitute back for u = y-d /2: |
|
|
|
|
⚫ |
= d (-tan^ (-1 )((d-2 y )/(2 d sqrt ((y (d-y) )/d^2 )+d )))+sqrt (y (d-y) )+d /2+C |
|
|
⚫ |
<math> = d \int ( \frac{1 }{p^2+1 }- \frac{2 p }{(p^2+1)^2 }) dp </math> |
|
|
|
|
|
<math> = d \int \frac{1}{(p^2+1)} dp - 2 d \int \frac{p}{(p^2+1)^2} dp</math> |
|
|
|
|
⚫ |
For the integrand <math>\frac{p}{( p^2 +1)^2 }</ math>, substitute <math>w = p^2 +1</math> and <math>dw = 2 p dp</math>: |
|
|
|
|
|
<math> = d \int \frac{1}{p^2+1} dp - d \int \frac{1}{w^2} dw </math> |
|
|
|
|
⚫ |
The integral of <math>\frac{1 }{p^2+1 }</math> is <math>\tan^ {-1 }{p }</math>: |
|
|
|
|
|
<math> = d \tan^{-1}{p}-d \int \frac{1}{w^2} dw</math> |
|
|
|
|
⚫ |
<math> = d \tan^ {-1 }{p }+ \frac{d }{w }+constant </math> |
|
|
|
|
⚫ |
Substitute back for <math>w = p^2+1 </math>: |
|
|
|
|
⚫ |
<math> = \frac{d ((p^2+1) tan^ {-1 }{p }+1) }{p^2+1 }+C </math> |
|
|
|
|
⚫ |
Substitute back for <math>p = \tan {\frac{s }{2 }}</math>: |
|
|
|
|
⚫ |
<math> = \frac{1 }{2 } d ( \cos {s }+2 \tan^ {-1 }{\tan {\frac{s }{2 }}}+1)+C </math> |
|
|
|
|
⚫ |
Substitute back for <math>s = \sin^ {-1 }{\frac{2 u }{d }}</math>: |
|
|
|
|
⚫ |
<math> = 1/2 ( \sqrt {d^2-4 u^2 }+2 d \tan^ {-1 }( \frac{2 u }{d \sqrt {1- \frac{4 u^2 }{d^2 }}+1) })+d)+C </math> |
|
|
|
|
⚫ |
Substitute back for <math>u = y- \frac{d }{2 }</math>: |
|
|
|
|
⚫ |
<math> = d (- \tan^ {-1 }{\frac{d-2 y }{2 d \sqrt {\frac{y (d-y) }{d^2 }}+d }})+ \sqrt {y (d-y) }+ \frac{d }{2 }+C </math> |
|
|
|
|
Factor the answer a different way: |
|
Factor the answer a different way: |
|
|
|
|
= 1/2 (-2 d tan^(-1)((d-2 y)/(2 d sqrt((y (d-y))/d^2)+d))+2 sqrt(y (d-y))+d)+C
|
|
<math> = \frac{1}{2} (-2 d \tan^{-1}{\frac{d-2 y}{2 d \sqrt{\frac{y (d-y)}{d^2}}+d}}+2 \sqrt{y (d-y)}+d)+C</math> |
|
|
|
|
Which is equivalent for restricted y and d values to: |
|
Which is equivalent for restricted y and d values to: |
|
|
|
|
= y sqrt(d/y-1)-1/2 d tan^(-1)((sqrt(d/y-1) (d-2 y))/(2 (d-y)))+C
|
|
<math> = y \sqrt{\frac{d}{y}-1}-\frac{1}{2} d \tan^{-1}{\frac{\sqrt{\frac{d}{y}-1} (d-2 y)}{2 (d-y)}}+C</math> |
|
|
|
|
[[User:Syjytg|Syjytg]] 23:00, 11 September 2012 (EDT) |
|
[[User:Syjytg|Syjytg]] 23:00, 11 September 2012 (EDT) |
Additions to this web site no longer count towards good deed points.
|
#
|
Week of...
|
Notes and Links
|
1
|
Sep 10
|
About This Class. Monday: Introduction and the Brachistochrone. Tuesday: More on the Brachistochrone, administrative issues. Tuesday Notes. Friday: Some basic techniques: first order linear equations.
|
2
|
Sep 17
|
Monday: Separated equations, escape velocities. HW1. Tuesday: Escape velocities, changing source and target coordinates, homogeneous equations. Friday: Reverse engineering separated and exact equations.
|
3
|
Sep 24
|
Monday: Solving exact equations, integration factors. HW2. Tuesday: Statement of the Fundamental Theorem. Class Photo. Friday: Proof of the Fundamental Theorem.
|
4
|
Oct 1
|
Monday: Last notes on the fundamental theorem. HW3. Tuesday Hour 1: The chain law, examples of variational problems. Tuesday Hour 2: Deriving Euler-Lagrange. Friday: Reductions of Euler-Lagrange.
|
5
|
Oct 8
|
Monday is thanksgiving. Tuesday: Lagrange multiplyers and the isoperimetric inequality. HW4. Friday: More Lagrange multipliers, numerical methods.
|
6
|
Oct 15
|
Monday: Euler and improved Euler. Tuesday: Evaluating the local error, Runge-Kutta, and a comparison of methods. Friday: Numerical integration, high order constant coefficient homogeneous linear ODEs.
|
7
|
Oct 22
|
Monday: Multiple roots, reduction of order, undetermined coefficients. Tuesday: From systems to matrix exponentiation. HW5. Term Test on Friday.
|
8
|
Oct 29
|
Monday: The basic properties of matrix exponentiation. Tuesday: Matrix exponentiation: examples. Friday: Phase Portraits. HW6. Nov 4 was the last day to drop this class
|
9
|
Nov 5
|
Monday: Non-homogeneous systems. Tuesday: The Catalan numbers, power series, and ODEs. Friday: Global existence for linear ODEs, the Wronskian.
|
10
|
Nov 12
|
Monday-Tuesday is UofT November break. HW7. Friday: Series solutions for .
|
11
|
Nov 19
|
Monday: is irrational, more on the radius of convergence. Tuesday (class): Airy's equation, Fuchs' theorem. Tuesday (tutorial): Regular singular points. HW8. Friday: Discussion of regular singular points..
|
12
|
Nov 26
|
Monday: Frobenius series by computer. Qualitative Analysis Handout (PDF). Tuesday: The basic oscillation theorem. Handout on the Frobenius Method. HW9. Friday: Non-oscillation, Sturm comparison.
|
13
|
Dec 3
|
Monday: More Sturm comparisons, changing the independent variable. Tuesday: Amplitudes of oscillations. Last class was on Tuesday!
|
F1
|
Dec 10
|
|
F2
|
Dec 17
|
The Final Exam (time, place, style, office hours times)
|
Register of Good Deeds
|
Add your name / see who's in!
|
|
|
Solving the complicated integral in the Brachistochroe integral
Complete the square in the integrand:
Substitute and :
Assuming all variables are positive, substitute and . Then and :
For the integrand substitute and . Then transform the integrand using the substitutions , and :
Simplify the integrand to get :
For the integrand use partial fractions:
For the integrand , substitute and :
The integral of is :
Substitute back for :
Substitute back for :
Substitute back for :
Substitute back for :
Factor the answer a different way:
Which is equivalent for restricted y and d values to:
Syjytg 23:00, 11 September 2012 (EDT)