12-267/Homework Assignment 1: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
Line 10: Line 10:
# <math>\frac{dy}{dx}=\frac{x-e^{-x}}{y+e^y}</math>.
# <math>\frac{dy}{dx}=\frac{x-e^{-x}}{y+e^y}</math>.
# <math>xdx+ye^{-x}dy=0</math>, with <math>y(0)=1</math>.
# <math>xdx+ye^{-x}dy=0</math>, with <math>y(0)=1</math>.
# <math>\frac{dy}{dx}=\frac{ax+b}{cx+d}</math>, where <math>a,b,c,d</math> are constants.
# <math>\frac{dy}{dx}=\frac{ax+b}{cx+d}</math>, where <math>a,b,c,d</math> are arbitrary constants.
# <math>\frac{dy}{dx}=-\frac{ax+by}{bx+cy}</math>, where <math>a,b,c</math> are constants.
# <math>\frac{dy}{dx}=-\frac{ax+by}{bx+cy}</math>, where <math>a,b,c</math> are arbitrary constants.
# <math>0=(e^x\sin y + 3y)dx - (3x-e^x\sin y)dy</math>.
# <math>0=(e^x\sin y + 3y)dx + (3(x+y)+e^x\cos y)dy</math>.

Revision as of 14:57, 17 September 2012

In Preparation

The information below is preliminary and cannot be trusted! (v)

Question 1. Show that if is a solution of , and is a solution of , then for any constant , is a solution of .

Question 2. Solve the following differential equations

  1. For , .
  2. with ; you may want to solve for first.
  3. .
  4. .
  5. , with .
  6. , where are arbitrary constants.
  7. , where are arbitrary constants.
  8. .