12-267/Homework Assignment 4: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 6: Line 6:
'''Task 0.''' Identify yourself in the [[12-267/Class Photo|Class Photo]]!
'''Task 0.''' Identify yourself in the [[12-267/Class Photo|Class Photo]]!


'''Task 1.''' Find the general solution of the Euler-Lagrange equation corresponding to the functional <math>J(y)=\int_a^bf(x)\sqrt{1+y'^2}dx</math>, and investigate the special cases <math>f(x)=\sqrt{x}</math> and <math>f(x)=x</math>.
'''Task 1.'''

'''Task 2.''' Find the extrema the following functional <math>y\mapsto\int_0^1(y'^2+x^2)dx</math> subject to <math>\int_0^1y^2dx=2</math> and <math>y(0)=0</math> and <math>y(1)=1</math>.

'''Task 3.''' Solve the "power line problem": Of all the curves <math>y</math> with <math>y(a)=A</math> and <math>y(b)=B</math> and with total arc-length <math>l</math>, find the one with the least potential energy <math>\int_a^by\sqrt{1+y'^2}dx</math>.


'''Task 4.''' Find a necessary condition for a function <math>y</math> satisfying <math>y(a)=A</math>, <math>y'(a)=A'</math>, <math>y(b)=B</math>, and <math>y'(b)=B'</math> to be an extremal of a functional of the form <math>y\mapsto\int_a^bF(x,y,y',y'')dx</math>.

'''Task 5.''' Find the curve <math>y</math> joining the points <math>(0,0)</math> and <math>(1,0)</math> and for which the integral <math>\int_0^1y''^2dx</math> is minimal, if <math>y'(0)=a</math> and <math>y'(1)=b</math>.

Revision as of 10:26, 8 October 2012

In Preparation

The information below is preliminary and cannot be trusted! (v)

This assignment is due at the tutorial on Tuesday October 16. Here and everywhere, neatness counts!! You may be brilliant and you may mean just the right things, but if your readers have a hard time deciphering your work they will give up and assume it is wrong.

Task 0. Identify yourself in the Class Photo!

Task 1. Find the general solution of the Euler-Lagrange equation corresponding to the functional , and investigate the special cases and .

Task 2. Find the extrema the following functional subject to and and .

Task 3. Solve the "power line problem": Of all the curves with and and with total arc-length , find the one with the least potential energy .


Task 4. Find a necessary condition for a function satisfying , , , and to be an extremal of a functional of the form .

Task 5. Find the curve joining the points and and for which the integral is minimal, if and .