12-267/Existence And Uniqueness Theorem: Difference between revisions

From Drorbn
Jump to navigationJump to search
(Inserted proof of uniqueness)
(Corrected error in proof of claim 2)
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{12-267/Navigation}}
Disclamer: This is a student prepared note based on [http://drorbn.net/dbnvp/12-267-120928.php the lecure of Monday September 21st].


Disclamer: This is a student prepared note based on the lecures of [http://drorbn.net/dbnvp/12-267-120928.php Friday, September 28th] and [http://drorbn.net/dbnvp/12-267-121001.php Monday October 1st].
Def. <math>f: \mathbb{R}_y \rightarrow \mathbb{R}</math> is called Lipschitz if <math>\exists \epsilon > 0, k > 0</math> (a Lipschitz constant of f) such that <math>|y_1 - y_2| < \epsilon \implies |f(y_1) - f(y_2)| \leq k |y_1 = y_2|</math>.

==Lipschitz==
'''Def.''' <math>f: \mathbb{R}_y \rightarrow \mathbb{R}</math> is called Lipschitz if <math>\exists \epsilon > 0, k > 0</math> (a Lipschitz constant of f) such that <math>|y_1 - y_2| < \epsilon \implies |f(y_1) - f(y_2)| \leq k |y_1 - y_2|</math>.


Note that any function that is Lipschitz is uniformly continuous, and that if a function f and its derivative are both continous on a compact set then f is Lipschitz.
Note that any function that is Lipschitz is uniformly continuous, and that if a function f and its derivative are both continous on a compact set then f is Lipschitz.


Thm. Existence and Uniqueness Theorem for ODEs
==Statement of Existence and Uniqueness Theorem==
'''Thm.''' Existence and Uniqueness Theorem for ODEs


Let <math>f:\mathbb{R} = [x_0 - a, x_0 + a] \times [y_0 - b, y_0 + b] \rightarrow \mathbb{R}</math> be continuous and uniformly Lipschitz relative to y. Then the equation <math>\Phi' = f(x, \Phi)</math> with <math> \Phi(x_0) = y_0</math> has a unique solution <math>\Phi : [x_0 - \delta, x_0 + \delta] \rightarrow \mathbb{R}</math> where <math>\delta = min(a, ^b/_M)</math> where M is a bound of f on <math>\mathbb{R}</math>.
Let <math>f:\mathbb{R} = [x_0 - a, x_0 + a] \times [y_0 - b, y_0 + b] \rightarrow \mathbb{R}</math> be continuous and uniformly Lipschitz relative to y. Then the equation <math>\Phi' = f(x, \Phi)</math> with <math> \Phi(x_0) = y_0</math> has a unique solution <math>\Phi : [x_0 - \delta, x_0 + \delta] \rightarrow \mathbb{R}</math> where <math>\delta = min(a, ^b/_M)</math> where M is a bound of f on <math>\mathbb{R}</math>.


==Proof of Existence==
This is proven by showing the equation <math>\Phi(x) = y_0 | \int_{x_0}^x f(t, \Phi(t))dt</math> exists, given the noted assumptions.
This is proven by showing the equation <math>\Phi(x) = y_0 + \int_{x_0}^x f(t, \Phi(t))dt</math> exists, given the noted assumptions.


Let <math>\Phi_0(x) = y_0</math> and let <math>\Phi_n(x) = y_0 + \int_{x_0}^x f(t, \Phi_{n-1}(t))dt</math>.
Let <math>\Phi_0(x) = y_0</math> and let <math>\Phi_n(x) = y_0 + \int_{x_0}^x f(t, \Phi_{n-1}(t))dt</math>. IF we can prove the following three claims, we have proven the theorem. The proofs of these claims will follow below.


Claim 1: <math>\Phi_n</math> is well-defined. More precisely, <math>\Phi_n</math> is continuous and <math>\forall x \in [x_0 - \delta, x_0 | \delta]</math>, <math>|\Phi_n(x) - y_0| \leq b</math> where b is as referred to above.
'''Claim 1''': <math>\Phi_n</math> is well-defined. More precisely, <math>\Phi_n</math> is continuous and <math>\forall x \in [x_0 - \delta, x_0 + \delta]</math>, <math>|\Phi_n(x) - y_0| \leq b</math> where b is as referred to above.


Claim 2: For <math>n \geq 1</math>, <math>|\Phi_n(x) - \Phi_{n-1}(x)| \leq \frac{Mk^{n-1}}{n!} |x-x_0|^n</math>.
'''Claim 2''': For <math>n \geq 1</math>, <math>|\Phi_n(x) - \Phi_{n-1}(x)| \leq \frac{Mk^{n-1}}{n!} |x-x_0|^n</math>.


Claim 3: if <math> \Phi_n(x)</math> is a series of functions such that <math>|\Phi_n(x) - \Phi_{n-1}(x)| < c_n</math>, with <math>\sum_{n=1}^{\infty} c_n</math> equal to some finite number, then <math>\Phi_n</math> converges uniformly to some function <math>\Phi</math>
'''Claim 3''': if <math> \Phi_n(x)</math> is a series of functions such that <math>|\Phi_n(x) - \Phi_{n-1}(x)| < c_n</math>, with <math>\sum_{n=1}^{\infty} c_n</math> equal to some finite number, then <math>\Phi_n</math> converges uniformly to some function <math>\Phi</math>


Using these three claims, we have shown that the solution <math>\Phi(x)</math> exists. The proofs of the claims are below.
Using these three claims, we have shown that the solution <math>\Phi(x)</math> exists.


==Proofs of Claims==
Proof of Uniqueness:
'''Proof of Claim 1''':

Suppose <math>\Phi</math> and <math>\Psi</math> are both solutions. Let <math>\Chi(x) = |\Phi(x) - \Psi(x)|</math>.

<math>\Chi(x) = |\Phi(x) - \Psi(x)| = |\int_{x_0}^x(f(x, \Phi(x)) - f(x, \Psi(x))) dx | \leq \int_{x_0}^x k|\Phi(x) - \Psi(x)| dx</math>

We have that <math>\Chi \leq k \int_{x_0}^x \Chi(x) dx</math> for some constant k, which means <math>\Chi' \leq k\Chi</math>, and that <math>\Chi(x) \geq 0</math>.

Let <math>U(x) = e^{-kx}\int_{x_0}^x \Chi(x) dx</math>. Note that <math>U(x_0) = 0</math> as in this case we are integrating over an empty set, and that U thus defined has <math>U(x) \geq 0</math>. Then

<math>U'(x) = -ke^{-kx}\int_{x_0}^x\Chi(x) dx + e^{-kx} \Chi(x) = e^{-kx}(\Chi(x) - k\int_{x_0}^x\Chi(x) dx) \leq 0</math>

Then <math>U(x_0) = 0 \and U'(x) = 0 \implies U(x) \leq 0</math>, and <math> 0 \leq U(x) \leq 0 \implies U(x) \equiv 0 \implies \Chi(x) \equiv 0 \implies \Phi(x) \equiv \Psi(x)</math>.

<math>\Box</math>

Proof of Claim 1:


The statement is trivially true for <math>\Phi_0</math>. Assume the claim is true for <math>\Phi_{n-1}</math>. <math>\Phi_n</math> is continuous, being the integral of a continuous function.
The statement is trivially true for <math>\Phi_0</math>. Assume the claim is true for <math>\Phi_{n-1}</math>. <math>\Phi_n</math> is continuous, being the integral of a continuous function.
Line 57: Line 47:
<math> \Box </math>
<math> \Box </math>


Proof of Claim 2:
'''Proof of Claim 2''':


<math> |\Phi_n(x) - \Phi_{n-1}(x)|</math>
<math> |\Phi_n(x) - \Phi_{n-1}(x)|</math>
Line 63: Line 53:
<math> = |\int_{x_0}^x f(t, \Phi_{n-1}(t))dt - \int_{x_0}^x f(t, \Phi_{n-2}(t))dt|</math>
<math> = |\int_{x_0}^x f(t, \Phi_{n-1}(t))dt - \int_{x_0}^x f(t, \Phi_{n-2}(t))dt|</math>


<math> \leq | \int_{x_0}^x (f(t, \Phi_{n-1}(t) - f(t, \Phi_{n-2}(t))dt )dt |</math>
<math> \leq | \int_{x_0}^x |f(t, \Phi_{n-1}(t)) - f(t, \Phi_{n-2}(t)) | dt |</math>


<math> \leq |\int_{x_0}^x k|\Phi_{n-1}(t) - \Phi_{n-2}(t)|dt|</math>
<math> \leq |\int_{x_0}^x k|\Phi_{n-1}(t) - \Phi_{n-2}(t)|dt|</math>
Line 77: Line 67:
Note that the sequence <math> c_n = \frac{M k^{n-1}}{n!} |x-x_0|^n</math> has <math>\sum_{n=1}^{\infty} c_n</math> equal to some finite number.
Note that the sequence <math> c_n = \frac{M k^{n-1}}{n!} |x-x_0|^n</math> has <math>\sum_{n=1}^{\infty} c_n</math> equal to some finite number.


Proof of Claim 3: Assigned in [http://drorbn.net/index.php?title=12-267/Homework_Assignment_3 Homework 3, Task 1]
'''Proof of Claim 3''': Assigned in [http://drorbn.net/index.php?title=12-267/Homework_Assignment_3 Homework 3, Task 1], see page for solutions.

==Proof of Uniqueness==
Suppose <math>\Phi</math> and <math>\Psi</math> are both solutions. Let <math>\Chi(x) = |\Phi(x) - \Psi(x)|</math>.

<math>\Chi(x) = |\Phi(x) - \Psi(x)| = |\int_{x_0}^x(f(x, \Phi(x)) - f(x, \Psi(x))) dx | \leq \int_{x_0}^x k|\Phi(x) - \Psi(x)| dx</math>

We have that <math>\Chi \leq k \int_{x_0}^x \Chi(x) dx</math> for some constant k, which means <math>\Chi' \leq k\Chi</math>, and that <math>\Chi(x) \geq 0</math>.

Let <math>U(x) = e^{-kx}\int_{x_0}^x \Chi(x) dx</math>. Note that <math>U(x_0) = 0</math> as in this case we are integrating over an empty set, and that U thus defined has <math>U(x) \geq 0</math>. Then

<math>U'(x) = -ke^{-kx}\int_{x_0}^x\Chi(x) dx + e^{-kx} \Chi(x) = e^{-kx}(\Chi(x) - k\int_{x_0}^x\Chi(x) dx) \leq 0</math>

Then <math>U(x_0) = 0 \and U'(x) = 0 \implies U(x) \leq 0</math>, and <math> 0 \leq U(x) \leq 0 \implies U(x) \equiv 0 \implies \Chi(x) \equiv 0 \implies \Phi(x) \equiv \Psi(x)</math>.

<math>\Box</math>

Latest revision as of 20:39, 16 December 2012

Disclamer: This is a student prepared note based on the lecures of Friday, September 28th and Monday October 1st.

Lipschitz

Def. is called Lipschitz if (a Lipschitz constant of f) such that .

Note that any function that is Lipschitz is uniformly continuous, and that if a function f and its derivative are both continous on a compact set then f is Lipschitz.

Statement of Existence and Uniqueness Theorem

Thm. Existence and Uniqueness Theorem for ODEs

Let be continuous and uniformly Lipschitz relative to y. Then the equation with has a unique solution where where M is a bound of f on .

Proof of Existence

This is proven by showing the equation exists, given the noted assumptions.

Let and let . IF we can prove the following three claims, we have proven the theorem. The proofs of these claims will follow below.

Claim 1: is well-defined. More precisely, is continuous and , where b is as referred to above.

Claim 2: For , .

Claim 3: if is a series of functions such that , with equal to some finite number, then converges uniformly to some function

Using these three claims, we have shown that the solution exists.

Proofs of Claims

Proof of Claim 1:

The statement is trivially true for . Assume the claim is true for . is continuous, being the integral of a continuous function.

Proof of Claim 2:

Note that the sequence has equal to some finite number.

Proof of Claim 3: Assigned in Homework 3, Task 1, see page for solutions.

Proof of Uniqueness

Suppose and are both solutions. Let .

We have that for some constant k, which means , and that .

Let . Note that as in this case we are integrating over an empty set, and that U thus defined has . Then

Then , and .