11-1100/Homework Assignment 4: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
{{In Preparation}}
{{11-1100/Navigation}}
{{11-1100/Navigation}}


Line 18: Line 17:
'''Problem 5.''' (Dummit and Foote) In <math>{\mathbb Z}[i]</math>, find the greatest common divisor of <math>85</math> and <math>1+13i</math>, and express it as a linear combination of these two elements.
'''Problem 5.''' (Dummit and Foote) In <math>{\mathbb Z}[i]</math>, find the greatest common divisor of <math>85</math> and <math>1+13i</math>, and express it as a linear combination of these two elements.


'''Problem 6.''' (Hard!) Show that the quotient ring <math>{\mathbb Q}[x,y]/\langle x^2+y^2-1\rangle</math> is not a UFD.
----

'''Problem 6.''' (Withdrawn, do not submit) Show that the quotient ring <math>{\mathbb Q}[x,y]/\langle x^2+y^2-1\rangle</math> is not a UFD.

Latest revision as of 10:16, 17 November 2011

This assignment is due at class time on Tuesday, November 29, 2011.

Solve the following questions

Problem 1. Prove that a ring is a PID iff it is a UFD in which for every non-zero .

Problem 2. (Selick) In a ring , and element is called "nilpotent" if for some positive , . Let be the set of all nilpotent elements of .

  1. Prove that if is commutative then is an ideal.
  2. Give an example of a non-commutative ring in which is not an ideal.

Problem 3. (comprehensive exam, 2009) Let be a commutative ring. Show that a polynomial is invertible in iff its constant term is invertible in and the rest of its coefficients are nilpotent.

Problem 4. (Lang) Show that the ring is a PID and hence a UFD. What are the units of that ring?

Problem 5. (Dummit and Foote) In , find the greatest common divisor of and , and express it as a linear combination of these two elements.

Problem 6. (Hard!) Show that the quotient ring is not a UFD.