09-240/Classnotes for Tuesday October 20: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{09-240/Navigation}}
== Definition ==
{{09-240/Class Notes Warning}}
V & W are "isomorphic" if there exists a linear transformation T:V → W & S:W → V such that T∘S=I<sub>W</sub> and S∘T=I<sub>V</sub>




'''Definition''': '''V''' and '''W''' are "isomorphic" if there exist linear transformations <math>\mathrm{T : V \rightarrow W}</math> and <math>\mathrm{S : W \rightarrow V}</math> such that <math>\mathrm{T \circ S} = I_\mathrm{W}</math> and <math>\mathrm{S \circ T} = I_\mathrm{V}</math>
== Theorem ==
If V& W are field dimensions over F, then V is isomorphic to W iff dim V=dim W


'''Theorem''': If '''V''' and '''W''' are finite-dimensional over ''F'', then '''V''' is isomorphic to '''W''' iff dim('''V''') = dim('''W''')


'''Corollary''': If dim('''V''') = ''n'' then <math>\mathrm{V} \cong F^n</math>
== Corollary ==
If dim V = n then <math> \mathrm{V} \cong \mathrm{F^n} </math>
:Note: <math>\cong</math> represents "is isomorphic to"
:Note: <math> \cong </math> represents isomorphism


----
Two "mathematical structures" are "isomorphic" if there's a "bijection" between their elements which preserves all relevant relations between such elements.


Two "mathematical structures" are "isomorphic" if there exists a "bijection" between their elements which preserves all relevant relations between such elements.
Example:

Plastic chess is "isomorphic" to ivory chess, but it is not isomorphic to checkers.
'''Example''': Plastic chess is "isomorphic" to ivory chess, but it is not isomorphic to checkers.

'''Example''': The game of 15. Players alternate drawing one card each.


Ex:
The game of 15. Players alternate drawing one card each.
Goal: To have exactly three of your cards add to 15.
Goal: To have exactly three of your cards add to 15.


Sample game:
O: 7, ''4, 6, 5'' → Wins!
* X picks 3
X: 3, 8, 1, 2
* O picks 7
* X picks 8
* O picks ''4''
* X picks 1
* O picks ''6''
* X picks 2
* O picks ''5''
* 4 + 6 + 5 = 15. O wins.


This game is isomorphic to Tic Tac Toe!
This game is isomorphic to Tic Tac Toe!


{| class="wikitable" border="1"
{| class="wikitable" border="0" cellpadding="2" cellspacing="0"
|-
|-
| style="border-style: none solid solid none" | 4
| 4
| style="border-style: none solid solid solid" | 9
| 9
| style="border-style: none none solid solid" | 2
| 2
|-
|-
| style="border-style: solid solid solid none" | 3
| 3
| style="border-style: solid solid solid solid" | 5
| 5
| style="border-style: solid none solid solid" | 7
| 7
|-
|-
| style="border-style: solid solid none none" | 8
| 8
| style="border-style: solid solid none solid" | 1
| 1
| style="border-style: solid none none solid" | 6
| 6
|}
|}

: X: 3, 8, 1, 2
: O: 7, ''4'', ''6'', ''5'' -- Wins!


Converts to:
Converts to:


{| class="wikitable" border="1"
{| class="wikitable" border="0" cellpadding="2" cellspacing="0"
|-
|-
| style="border-style: none solid solid none" | O
| O
| style="border-style: none solid solid solid" | 9
| 9
| style="border-style: none none solid solid" | X
| X
|-
|-
| style="border-style: solid solid solid none" | X
| X
| style="border-style: solid solid solid solid" | O
| O
| style="border-style: solid none solid solid" | O
| O
|-
|-
| style="border-style: solid solid none none" | X
| X
| style="border-style: solid solid none solid" | X
| X
| style="border-style: solid none none solid" | O
| O
|}
|}


: <math>\mathrm{S \circ T} = I_\mathrm{V}</math>
: S∘T=I<sub>V</sub>
: <math>\mathrm{T \circ S} = I_\mathrm{W}</math>
: T∘S=I<sub>W</sub>
: <math>\mathrm T(O_\mathrm{V}) = O_\mathrm{W}</math>
: T(O<sub>V</sub>)=O<sub>W</sub>


: T(x+y)=T(x)+T(y)
: <math>\mathrm T(x + y) = T(x) + T(y)</math>
: <math>\mathrm T(cv) = c\mathrm T(v)</math>
: T(cV)=cT(V)
: Likewise for <math> \mathrm{S} </math>
: Likewise for <math>\mathrm S</math>


: z=x+y T(z)=T(x)+T(y)
: <math>z = x + y \Rightarrow \mathrm T(z) = \mathrm T(x) + \mathrm T(y)</math>
: u=7v T(u)=7T(v)
: <math>u = 7v \Rightarrow \mathrm T(u) = 7\mathrm T(v)</math>


Proof of Theorem <math> \Leftrightarrow </math> Assume dim V= dim W=n
Proof of Theorem <math>\iff</math> Assume dim('''V''') = dim('''W''') = ''n''
: There exists basis <math>\beta = \{u_1, \ldots, u_n\} \in \mathrm V</math>
: ∃ basis β= (U<sub>1</sub>...U<sub>n</sub>) of V
: <math>\alpha = \{w_1, ..., w_n\} \in \mathrm W</math>
: α=(W<sub>1</sub>...W<sub>n</sub>) of W
: by an earlier theorem, a l.t. T:V→W such that T(U<sub>i</sub>)=W<sub>i</sub>
: by an earlier theorem, there exists a l.t. <math>\mathrm{T : V \rightarrow W}</math> such that <math>\mathrm T(u_i) = w_i</math>


<math>\mathrm T(\sum a_i u_i) = \sum a_i \mathrm T(u_i) = \sum a_i w_i</math>
(T(∑a<sub>i</sub>u<sub>i</sub>)=∑a<sub>i</sub>T(u<sub>i</sub>)=∑a<sub>i</sub>u<sub>i</sub>)


There exists a l.t. <math>\mathrm{S : W \rightarrow V}</math> such that <math>\mathrm S(w_i) = u_i</math>
∃ a l.t. S:W→V s.t. S(W<sub>i</sub>)=U<sub>i</sub>




== Claim ==
== Claim ==
: <math>\mathrm{S \circ T} = I_\mathrm{V}</math>
: S∘T=I<sub>v</sub>
: <math>\mathrm{T \circ S} = I_\mathrm{W}</math>
: T∘S=I<sub>w</sub>




Line 105: Line 116:
: Given any w∈W let u=S(W)
: Given any w∈W let u=S(W)
: As β is a basis find a<sub>i</sub>s in F s.t. v=∑a<sub>i</sub>u<sub>i</sub>
: As β is a basis find a<sub>i</sub>s in F s.t. v=∑a<sub>i</sub>u<sub>i</sub>
Apply T to both sides: T(S(W))=T(u)=T(∑a<sub>i</sub>u<sub>i</sub>)=∑a<sub>i</sub>T(u<sub>i</sub>)=∑a<sub>i</sub>W<sub>i</sub> ∴ I win!!! (QED)
Apply T to both sides: T(S(W))=T(u)=T(∑a<sub>i</sub>u<sub>i</sub>)=∑a<sub>i</sub>T(u<sub>i</sub>)=∑a<sub>i</sub>W<sub>i</sub>
::: ∴ I win!!! (QED)


: T T
: V → W ⇔ V' → W'
: rank T=rank T'
Fix t:V→Wa l.t.<math>Insert formula here</math>

== Definition ==
# N(T) = ker(T) = {u∈V : Tu = 0<sub>W</sub>}
# R(T) = <sub>i</sub>m(T) = {T(u) : u∈V}

== Prop/Def ==
# N(T) ⊂ V is a subspace of V-------nullity(T) := dim N(T)
# R(T) ⊂ W is a subspace of W--------rank(T) := dim R(T)


== Proof 1 ==
: x,y ∈N(T)⇒T(x)=0, T(y)=0
: T(x+y)=T9x)+T(y)=0+0=0
: x+y∈N(T)
::: ∴ I win!!! (QED)


== Proof 2 ==
: Let y∈R(T)⇒fix x s.t y=T(x),
: --------7y=7T(x)=T(7x)
: ----------⇒7y∈R(T)
::: ∴ I win!!! (QED)


== Examples ==
1.
: 0:V→W---------N(0)=V
: R(0)={0<sub>W</sub>}-----------nullity(0)=dim V
: --------------rank(0)=0
:: dim V+0=dimV
2.
:I<sub>V</sub>:V→V
:N(I)={0}
:nullity=0
:R(I)=dim V
:2'If T:V→W is an imorphism
:N(T)={0}
:nullity =0
:R(T)=W
:rank=dim W
::0+dim V=dim V
3.
:D:P<sub>7</sub>(R)→P<sub>7</sub>(R)
:Df=f'
::N(D)={C⊃C°: C∈R}=P<sub>0</sub>(R)
:R(D)⊂P<sub>6</sub>(R)
::nullity(D)=1
::basis:(1x°)
::rank(D)=7
:::7+1=8
4.
:3':D<sup>2</sup>:P<sub>7</sub>(R)
:D<sup>2</sup>f=f''
:W(D<sup>2</sup>)={ax+b: a,b∈R}=P<sub>1</sub>(R)
::nullity(D<sup>2</sup>)=2
::R(D<sup>2</sup>)=P<sub>5</sub>(R)
:::rank (D<sup>2</sup>)=6
::6+2=8

== Theorem ==
(rank-nullity Theorem, a.k.a. dimension Theorem)
:nullity(T)+rank(T)=dim V
:(for a l.t. T:V→W) when V is F.d.

== Proof ==
(To be continued next day)

[[Image:Oct 20 Lecture Notes Page 1.JPG|600px]]
[[Image:Oct 20 Lecture Notes Page 2.JPG|600px]]
[[Image:Oct 20 Lecture Notes Page 3.JPG|600px]]
[[Image:Oct 20 Lecture Notes Page 4.JPG|600px]]
[[Image:Oct 20 Lecture Notes Page 5.JPG|600px]]
[[Image:Oct20note1.jpg|600px]]
[[Image:Oct20note2.jpg|600px]]
[[Image:Oct20note3.jpg|600px]]
[[Image:Oct20note4.jpg|600px]]
[[Image:Oct20note5.jpg|600px]]
[[Image:Oct20note6.jpg|600px]]
[[Image:Oct20note7.jpg|600px]]
[[Image:Oct20note8.jpg|600px]]

Latest revision as of 09:56, 14 December 2009

WARNING: The notes below, written for students and by students, are provided "as is", with absolutely no warranty. They can not be assumed to be complete, correct, reliable or relevant. If you don't like them, don't read them. It is a bad idea to stop taking your own notes thinking that these notes can be a total replacement - there's nothing like one's own handwriting! Visit this pages' history tab to see who added what and when.


Definition: V and W are "isomorphic" if there exist linear transformations and such that and

Theorem: If V and W are finite-dimensional over F, then V is isomorphic to W iff dim(V) = dim(W)

Corollary: If dim(V) = n then

Note: represents "is isomorphic to"

Two "mathematical structures" are "isomorphic" if there exists a "bijection" between their elements which preserves all relevant relations between such elements.

Example: Plastic chess is "isomorphic" to ivory chess, but it is not isomorphic to checkers.

Example: The game of 15. Players alternate drawing one card each.

Goal: To have exactly three of your cards add to 15.

Sample game:

  • X picks 3
  • O picks 7
  • X picks 8
  • O picks 4
  • X picks 1
  • O picks 6
  • X picks 2
  • O picks 5
  • 4 + 6 + 5 = 15. O wins.

This game is isomorphic to Tic Tac Toe!

4 9 2
3 5 7
8 1 6
X: 3, 8, 1, 2
O: 7, 4, 6, 5 -- Wins!

Converts to:

O 9 X
X O O
X X O
Likewise for

Proof of Theorem Assume dim(V) = dim(W) = n

There exists basis
by an earlier theorem, there exists a l.t. such that

There exists a l.t. such that


Claim


Proof

If u∈ unto U=∑aiui

(S∘T)(u)=S(T(u))=S(T(∑aiui))
=S(∑aiwi)=∑aiui=u
⇒S∘T=Iv...
⇒Assume T&S as above exist
Choose a basis β= (U1...Un) of V

Claim

α=(W1=Tu1, W2=Tu2, ..., Wn=Tun)

is a basis of W, so dim W=n

Proof

α is lin. indep.

T(0)=0=∑aiwi=∑aiTui=T(∑aiui)
Apply S to both sides:
0=∑aiui
So ∃iai=0 as β is a basis

α Spans W

Given any w∈W let u=S(W)
As β is a basis find ais in F s.t. v=∑aiui

Apply T to both sides: T(S(W))=T(u)=T(∑aiui)=∑aiT(ui)=∑aiWi

∴ I win!!! (QED)


T T
V → W ⇔ V' → W'
rank T=rank T'

Fix t:V→Wa l.t.

Definition

  1. N(T) = ker(T) = {u∈V : Tu = 0W}
  2. R(T) = im(T) = {T(u) : u∈V}

Prop/Def

  1. N(T) ⊂ V is a subspace of V-------nullity(T) := dim N(T)
  2. R(T) ⊂ W is a subspace of W--------rank(T) := dim R(T)


Proof 1

x,y ∈N(T)⇒T(x)=0, T(y)=0
T(x+y)=T9x)+T(y)=0+0=0
x+y∈N(T)
∴ I win!!! (QED)


Proof 2

Let y∈R(T)⇒fix x s.t y=T(x),
--------7y=7T(x)=T(7x)
----------⇒7y∈R(T)
∴ I win!!! (QED)


Examples

1.

0:V→W---------N(0)=V
R(0)={0W}-----------nullity(0)=dim V
--------------rank(0)=0
dim V+0=dimV

2.

IV:V→V
N(I)={0}
nullity=0
R(I)=dim V
2'If T:V→W is an imorphism
N(T)={0}
nullity =0
R(T)=W
rank=dim W
0+dim V=dim V

3.

D:P7(R)→P7(R)
Df=f'
N(D)={C⊃C°: C∈R}=P0(R)
R(D)⊂P6(R)
nullity(D)=1
basis:(1x°)
rank(D)=7
7+1=8

4.

3':D2:P7(R)
D2f=f
W(D2)={ax+b: a,b∈R}=P1(R)
nullity(D2)=2
R(D2)=P5(R)
rank (D2)=6
6+2=8

Theorem

(rank-nullity Theorem, a.k.a. dimension Theorem)

nullity(T)+rank(T)=dim V
(for a l.t. T:V→W) when V is F.d.

Proof

(To be continued next day)

Oct 20 Lecture Notes Page 1.JPG Oct 20 Lecture Notes Page 2.JPG Oct 20 Lecture Notes Page 3.JPG Oct 20 Lecture Notes Page 4.JPG Oct 20 Lecture Notes Page 5.JPG Oct20note1.jpg Oct20note2.jpg Oct20note3.jpg Oct20note4.jpg Oct20note5.jpg Oct20note6.jpg Oct20note7.jpg Oct20note8.jpg