09-240/Classnotes for Tuesday October 20

From Drorbn
Jump to: navigation, search
WARNING: The notes below, written for students and by students, are provided "as is", with absolutely no warranty. They can not be assumed to be complete, correct, reliable or relevant. If you don't like them, don't read them. It is a bad idea to stop taking your own notes thinking that these notes can be a total replacement - there's nothing like one's own handwriting! Visit this pages' history tab to see who added what and when.


Definition: V and W are "isomorphic" if there exist linear transformations \mathrm{T : V \rightarrow W} and \mathrm{S : W \rightarrow V} such that \mathrm{T \circ S} = I_\mathrm{W} and \mathrm{S \circ T} = I_\mathrm{V}

Theorem: If V and W are finite-dimensional over F, then V is isomorphic to W iff dim(V) = dim(W)

Corollary: If dim(V) = n then \mathrm{V} \cong F^n

Note: \cong represents "is isomorphic to"

Two "mathematical structures" are "isomorphic" if there exists a "bijection" between their elements which preserves all relevant relations between such elements.

Example: Plastic chess is "isomorphic" to ivory chess, but it is not isomorphic to checkers.

Example: The game of 15. Players alternate drawing one card each.

Goal: To have exactly three of your cards add to 15.

Sample game:

  • X picks 3
  • O picks 7
  • X picks 8
  • O picks 4
  • X picks 1
  • O picks 6
  • X picks 2
  • O picks 5
  • 4 + 6 + 5 = 15. O wins.

This game is isomorphic to Tic Tac Toe!

4 9 2
3 5 7
8 1 6
X: 3, 8, 1, 2
O: 7, 4, 6, 5 -- Wins!

Converts to:

O 9 X
X O O
X X O
\mathrm{S \circ T} = I_\mathrm{V}
\mathrm{T \circ S} = I_\mathrm{W}
\mathrm T(O_\mathrm{V}) = O_\mathrm{W}
\mathrm T(x + y) = T(x) + T(y)
\mathrm T(cv) = c\mathrm T(v)
Likewise for \mathrm S
z = x + y \Rightarrow \mathrm T(z) = \mathrm T(x) + \mathrm T(y)
u = 7v \Rightarrow \mathrm T(u) = 7\mathrm T(v)

Proof of Theorem \iff Assume dim(V) = dim(W) = n

There exists basis \beta = \{u_1, \ldots, u_n\} \in \mathrm V
\alpha = \{w_1, ..., w_n\} \in \mathrm W
by an earlier theorem, there exists a l.t. \mathrm{T : V \rightarrow W} such that \mathrm T(u_i) = w_i

\mathrm T(\sum a_i u_i) = \sum a_i \mathrm T(u_i) = \sum a_i w_i

There exists a l.t. \mathrm{S : W \rightarrow V} such that \mathrm S(w_i) = u_i


Contents

Claim

\mathrm{S \circ T} = I_\mathrm{V}
\mathrm{T \circ S} = I_\mathrm{W}


Proof

If u∈ \mathrm{V} unto U=∑aiui

(S∘T)(u)=S(T(u))=S(T(∑aiui))
=S(∑aiwi)=∑aiui=u
⇒S∘T=Iv...
⇒Assume T&S as above exist
Choose a basis β= (U1...Un) of V

Claim

α=(W1=Tu1, W2=Tu2, ..., Wn=Tun)

is a basis of W, so dim W=n

Proof

α is lin. indep.

T(0)=0=∑aiwi=∑aiTui=T(∑aiui)
Apply S to both sides:
0=∑aiui
So ∃iai=0 as β is a basis

α Spans W

Given any w∈W let u=S(W)
As β is a basis find ais in F s.t. v=∑aiui

Apply T to both sides: T(S(W))=T(u)=T(∑aiui)=∑aiT(ui)=∑aiWi

∴ I win!!! (QED)


T T
V → W ⇔ V' → W'
rank T=rank T'

Fix t:V→Wa l.t.Insert formula here

Definition

  1. N(T) = ker(T) = {u∈V : Tu = 0W}
  2. R(T) = im(T) = {T(u) : u∈V}

Prop/Def

  1. N(T) ⊂ V is a subspace of V-------nullity(T) := dim N(T)
  2. R(T) ⊂ W is a subspace of W--------rank(T) := dim R(T)


Proof 1

x,y ∈N(T)⇒T(x)=0, T(y)=0
T(x+y)=T9x)+T(y)=0+0=0
x+y∈N(T)
∴ I win!!! (QED)


Proof 2

Let y∈R(T)⇒fix x s.t y=T(x),
--------7y=7T(x)=T(7x)
----------⇒7y∈R(T)
∴ I win!!! (QED)


Examples

1.

0:V→W---------N(0)=V
R(0)={0W}-----------nullity(0)=dim V
--------------rank(0)=0
dim V+0=dimV

2.

IV:V→V
N(I)={0}
nullity=0
R(I)=dim V
2'If T:V→W is an imorphism
N(T)={0}
nullity =0
R(T)=W
rank=dim W
0+dim V=dim V

3.

D:P7(R)→P7(R)
Df=f'
N(D)={C⊃C°: C∈R}=P0(R)
R(D)⊂P6(R)
nullity(D)=1
basis:(1x°)
rank(D)=7
7+1=8

4.

3':D2:P7(R)
D2f=f
W(D2)={ax+b: a,b∈R}=P1(R)
nullity(D2)=2
R(D2)=P5(R)
rank (D2)=6
6+2=8

Theorem

(rank-nullity Theorem, a.k.a. dimension Theorem)

nullity(T)+rank(T)=dim V
(for a l.t. T:V→W) when V is F.d.

Proof

(To be continued next day)

Oct 20 Lecture Notes Page 1.JPG Oct 20 Lecture Notes Page 2.JPG Oct 20 Lecture Notes Page 3.JPG Oct 20 Lecture Notes Page 4.JPG Oct 20 Lecture Notes Page 5.JPG Oct20note1.jpg Oct20note2.jpg Oct20note3.jpg Oct20note4.jpg Oct20note5.jpg Oct20note6.jpg Oct20note7.jpg Oct20note8.jpg