07081300/Homework Assignment 9
From Drorbn

Contents 
Reading
Read, reread and rereread your notes to this point, and make sure that you really, really really, really really really understand everything in them. Do the same every week!
Doing
(Problems 1,2,4,5 below are taken with slight modifications from Hatcher's book, pages 7980).
 Show that if and are covering spaces, then so is their product .
 Construct (i.e., describe in explicit terms) a simplyconnected covering space of the space that is the union of a sphere and a diameter. Do the same when is the union of a sphere and a circle intersecting it in two points.
 Do the same to the space of the term test: .
 Find all the connected 2sheeted and 3sheeted covering spaces of the "figure eight space" (two circles joined at a point), up to isomorphism of covering spaces without base points.
 Let and be the generators of corresponding to the two summands. Draw a picture of the covering space of corresponding to the normal subgroup generated by , , and , and prove that this covering space is indeed the correct one.
Due Date
This assignment is due in class on Thursday February 28, 2008.
Just for Fun
 What happens if in problem 1 we consider infinitely many covering spaces. That is, is the product of an infinite family of covering spaces a covering space? Here is an idea but don't look at it until you have think on the problem for a while.
 This raises another question. A "pathwise totally disconnected space" is a space in which every path is a constant path. How much of the theory of covering spaces can be generalized to "coverings" in which the fibers are pathwise totally disconnected, instead of discrete?
 Here is a short introduction to regular covering spaces and an application of them to the last problem on this homework: Regular Covering Spaces (PDF).