10-1100/Homework Assignment 2

From Drorbn
Jump to navigationJump to search

This assignment is due at class time on Thursday, October 21, 2010.

Solve the following questions

  1. (Selick)
    1. What it the least integer [math]\displaystyle{ n }[/math] for which the symmetric group [math]\displaystyle{ S_n }[/math] contains an element of order 18?
    2. What is the maximal order of an element in [math]\displaystyle{ S_{26} }[/math]? (That is, of a shuffling of the red cards within a deck of cards?)
  2. (Selick) Let [math]\displaystyle{ H }[/math] be a subgroup of index 2 in a group [math]\displaystyle{ G }[/math]. Show that [math]\displaystyle{ H }[/math] is normal in [math]\displaystyle{ G }[/math].
  3. Let [math]\displaystyle{ \sigma\in S_{20} }[/math] be a permutation whose cycle decomposition consists of one 5-cycle, two 3-cycles, and one 2-cycle. What is the order of the centralizer [math]\displaystyle{ C_{S_{20}}(\sigma) }[/math] of [math]\displaystyle{ \sigma }[/math]?
  4. (Selick) Let [math]\displaystyle{ G }[/math] be a group of odd order. Show that [math]\displaystyle{ x }[/math] is not conjugate to [math]\displaystyle{ x^{-1} }[/math] unless [math]\displaystyle{ x=e }[/math].
  5. (Dummit and Foote) Show that if [math]\displaystyle{ G/Z(G) }[/math] is cyclic then [math]\displaystyle{ G }[/math] is Abelian.
  6. (Lang) Prove that if the group of automorphisms of a group [math]\displaystyle{ G }[/math] is cyclic, then [math]\displaystyle{ G }[/math] is Abelian.
  7. (Lang)
    1. Let [math]\displaystyle{ G }[/math] be a group and let [math]\displaystyle{ H }[/math] be a subgroup of finite index. Prove that there is a normal subgroup [math]\displaystyle{ N }[/math] of [math]\displaystyle{ G }[/math], contained in [math]\displaystyle{ H }[/math], so that [math]\displaystyle{ (G:N) }[/math] is also finite. (Hint: Let [math]\displaystyle{ (G:H)=n }[/math] and find a morphism [math]\displaystyle{ G\to S_n }[/math] whose kernel is contained in [math]\displaystyle{ H }[/math].)
    2. Let [math]\displaystyle{ G }[/math] be a group and [math]\displaystyle{ H_1 }[/math] and [math]\displaystyle{ H_2 }[/math] be subgroups of [math]\displaystyle{ G }[/math]. Suppose [math]\displaystyle{ (G:H_1)\lt \infty }[/math] and [math]\displaystyle{ (G:H_2)\lt \infty }[/math]. Show that [math]\displaystyle{ (G:H_1\cap H_2)\lt \infty }[/math]