AKT-09/HW1
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Solve the following problems and submit them in class by October 13, 2006:
Problem 1. If [math]\displaystyle{ f \in {\mathcal V}_n }[/math] and [math]\displaystyle{ g \in {\mathcal V}_m }[/math] then [math]\displaystyle{ f \cdot g \in {\mathcal V}_{n+m} }[/math] (as what one would expect by looking at degrees of polynomials) and [math]\displaystyle{ W_{f \cdot g} = m_\mathbb{Q} \circ (W_f \otimes W_g) \circ \Delta }[/math] where [math]\displaystyle{ (W_f \otimes W_g) \circ \Delta: {\mathcal A} \rightarrow \mathbb{Q} \otimes \mathbb{Q} }[/math] and [math]\displaystyle{ m_\mathbb{Q} }[/math] is the multiplication of rationals. (See 090924-2, minute 36:01).
Problem 2. Let [math]\displaystyle{ \Theta:{\mathcal A}\to{\mathcal A} }[/math] be the multiplication operator by the 1-chord diagram [math]\displaystyle{ \theta }[/math], and let [math]\displaystyle{ \partial_\theta=\frac{d}{d\theta} }[/math] be the adjoint of multiplication by [math]\displaystyle{ W_\theta }[/math] on [math]\displaystyle{ {\mathcal A}^\star }[/math], where [math]\displaystyle{ W_\theta }[/math] is the obvious dual of [math]\displaystyle{ \theta }[/math] in [math]\displaystyle{ {\mathcal A}^\star }[/math]. Let [math]\displaystyle{ P:{\mathcal A}\to{\mathcal A} }[/math] be defined by
Verify the following assertions, but submit only your work on assertions 4,5,7,11:
- [math]\displaystyle{ \left[\partial_\theta,\Theta\right]=1 }[/math], where [math]\displaystyle{ 1:{\mathcal A}\to{\mathcal A} }[/math] is the identity map and where [math]\displaystyle{ [A,B]:=AB-BA }[/math] for any two operators.
- [math]\displaystyle{ P }[/math] is a degree [math]\displaystyle{ 0 }[/math] operator; that is, [math]\displaystyle{ \deg Pa=\deg a }[/math] for all [math]\displaystyle{ a\in{\mathcal A} }[/math].
- [math]\displaystyle{ \partial_\theta }[/math] satisfies Leibnitz' law: [math]\displaystyle{ \partial_\theta(ab)=(\partial_\theta a)b+a(\partial_\theta b) }[/math] for any [math]\displaystyle{ a,b\in{\mathcal A} }[/math].
- [math]\displaystyle{ P }[/math] is an algebra morphism: [math]\displaystyle{ P1=1 }[/math] and [math]\displaystyle{ P(ab)=(Pa)(Pb) }[/math].
- [math]\displaystyle{ \Theta }[/math] satisfies the co-Leibnitz law: [math]\displaystyle{ \Box\circ\Theta=(\Theta\otimes 1+1\otimes\Theta)\circ\Box }[/math] (why does this deserve the name "the co-Leibnitz law"?).
- [math]\displaystyle{ P }[/math] is a co-algebra morphism: [math]\displaystyle{ \eta\circ P=\eta }[/math] (where [math]\displaystyle{ \eta }[/math] is the co-unit of [math]\displaystyle{ {\mathcal A} }[/math]) and [math]\displaystyle{ \Box\circ P=(P\otimes P)\circ\Box }[/math].
- [math]\displaystyle{ P\theta=0 }[/math] and hence [math]\displaystyle{ P\langle\theta\rangle=0 }[/math], where [math]\displaystyle{ \langle\theta\rangle }[/math] is the ideal generated by [math]\displaystyle{ \theta }[/math] in the algebra [math]\displaystyle{ {\mathcal A} }[/math].
- If [math]\displaystyle{ Q:{\mathcal A}\to{\mathcal A} }[/math] is defined by
[math]\displaystyle{ Q = \sum_{n=0}^\infty \frac{(-\Theta)^n}{(n+1)!}\partial_\theta^{(n+1)} }[/math] then [math]\displaystyle{ a=\theta Qa+Pa }[/math] for all [math]\displaystyle{ a\in{\mathcal A} }[/math]. - [math]\displaystyle{ \ker P=\langle\theta\rangle }[/math].
- [math]\displaystyle{ P }[/math] descends to a Hopf algebra morphism [math]\displaystyle{ {\mathcal A}^r\to{\mathcal A} }[/math], and if [math]\displaystyle{ \pi:{\mathcal A}\to{\mathcal A}^r }[/math] is the obvious projection, then [math]\displaystyle{ \pi\circ P }[/math] is the identity of [math]\displaystyle{ {\mathcal A}^r }[/math]. (Recall that [math]\displaystyle{ {\mathcal A}^r={\mathcal A}/\langle\theta\rangle }[/math]).
- [math]\displaystyle{ P^2=P }[/math].
Mandatory but unenforced. Find yourself in the class photo and identify yourself as explained in the photo page.