09-240/Classnotes for Tuesday September 15
[math]\displaystyle{ Insert formula here }[/math][math]\displaystyle{ Insert formula here }[/math]File:Classnotes For Tuesday, September 15.jpg yangjiay:09-240 Classnotes for Tuesday September 15 2009 page 5.jpg
The real numbers A set [math]\displaystyle{ \mathbb R }[/math] with two binary operators and two special elements [math]\displaystyle{ 0, 1 \in \mathbb R }[/math] s.t.
- [math]\displaystyle{ F1.\quad \forall a, b \in \mathbb R, a + b = b + a \mbox{ and } a \cdot b = b \cdot a }[/math]
- [math]\displaystyle{ F2.\quad \forall a, b, c, (a + b) + c = a + (b + c) \mbox{ and } (a \cdot b) \cdot c = a \cdot (b \cdot c) }[/math]
- [math]\displaystyle{ \mbox{(So for any real numbers } a_1, a_2, ..., a_n, \mbox{ one can sum them in any order and achieve the same result.} }[/math]
- [math]\displaystyle{ F3.\quad \forall a, a + 0 = a \mbox{ and } a \cdot 0 = 0 \mbox{ and } a \cdot 1 = a }[/math]
- [math]\displaystyle{ F4.\quad \forall a, \exists b, a + b = 0 \mbox{ and } \forall a \ne 0, \exists b, a \cdot b = 1 }[/math]
- [math]\displaystyle{ \mbox{So } a + (-a) = 0 \mbox{ and } a \cdot a^{-1} = 1 }[/math]
- [math]\displaystyle{ \mbox{(So } (a + b) \cdot (a - b) = a^2 - b^2) }[/math]
- [math]\displaystyle{ \forall a, \exists x, x \cdot x = a \mbox{ or } a + x \cdot x = 0 }[/math]
- Note: or means inclusive or in math.
- [math]\displaystyle{ F5.\quad (a + b) \cdot c = a \cdot c + b \cdot c }[/math]
Definition: A field is a set F with two binary operators [math]\displaystyle{ \,\!+ }[/math]: F×F → F, [math]\displaystyle{ \times\,\! }[/math]: F×F → F and two elements [math]\displaystyle{ 0, 1 \in \mathbb R }[/math] s.t.
- [math]\displaystyle{ F1\quad \mbox{Commutativity } a + b = b + a \mbox{ and } a \cdot b = b \cdot a \forall a, b \in F }[/math]
- [math]\displaystyle{ F2\quad \mbox{Associativity } (a + b) + c = a + (b + c) \mbox{ and } (a \cdot b) \cdot c = a \cdot (b \cdot c) }[/math]
- [math]\displaystyle{ F3\quad a + 0 = a, a \cdot 1 = a }[/math]
- [math]\displaystyle{ F4\quad \forall a, \exists b, a + b = 0 \mbox{ and } \forall a \ne 0, \exists b, a \cdot b = 1 }[/math]
- [math]\displaystyle{ F5\quad \mbox{Distributivity } (a + b) \cdot c = a \cdot c + b \cdot c }[/math]
Examples
- [math]\displaystyle{ F = \mathbb R }[/math]
- [math]\displaystyle{ F = \mathbb Q }[/math]
- [math]\displaystyle{ \mathbb C = \{ a + bi : a, b \in \mathbb R \} }[/math]
- [math]\displaystyle{ i = \sqrt{-1} }[/math]
- [math]\displaystyle{ \,\!(a + bi) + (c + di) = (a + c) + (b + d)i }[/math]
- [math]\displaystyle{ \,\!0 = 0 + 0i, 1 = 1 + 0i }[/math]
- [math]\displaystyle{ \,\!F_2 = \{ 0, 1 \} }[/math]
- [math]\displaystyle{ \,\!F_7 = \{ 0, 1,2,3,4,5,6 \} }[/math]
- [math]\displaystyle{ \,\!F_6 = \{ 0, 1,2,3,4,5, \} }[/math] is not a field (counterexample)
Theorem: [math]\displaystyle{ \,\!F_P }[/math] for [math]\displaystyle{ p\gt 1 }[/math] is a field IFF [math]\displaystyle{ p }[/math] is a prime number
Tedious Theorem
...