The Existence of the Exponential Function

From Drorbn
Jump to navigationJump to search

Introduction

The purpose of this paperlet is to use some homological algebra in order to prove the existence of a power series (with coefficients in ) which satisfies the non-linear equation

[Main]

as well as the initial condition

[Init]
(higher order terms).

Alternative proofs of the existence of are of course available, including the explicit formula . Thus the value of this paperlet is not in the result it proves but rather in the allegorical story it tells: that there is a technique to solve functional equations such as [Main] using homology. There are plenty of other examples for the use of that technique, in which the equation replacing [Main] isn't as easy. Thus the exponential function seems to be the easiest illustration of a general principle and as such it is worthy of documenting.

Thus below we will pretend not to know the exponential function and/or its relationship with the differential equation .

The Scheme

We aim to construct and solve [Main] inductively, degree by degree. Equation [Init] gives in degrees 0 and 1, and the given formula for indeed solves [Main] in degrees 0 and 1. So booting the induction is no problem. Now assume we've found a degree 7 polynomial which solves [Main] up to and including degree 7, but at this stage of the construction, it may well fail to solve [Main] in degree 8. Thus modulo degrees 9 and up, we have

[M]
,

where is the "mistake for ", a certain homogeneous polynomial of degree 8 in the variables and .

Our hope is to "fix" the mistake by replacing with , where is a degree 8 "correction", a homogeneous polynomial of degree 8 in (well, in this simple case, just a multiple of ).

So we substitute into (a version of [Main]), expand, and consider only the low degree terms - those below and including degree 8. The terms containing no 's make a copy of the left hand side of [M]. The terms linear in

Computing the Homology