Additions to the MAT 1100 web site no longer count towards good deed points
|
#
|
Week of...
|
Notes and Links
|
1
|
Sep 13
|
About This Class, Tuesday - Non Commutative Gaussian Elimination, Thursday
|
2
|
Sep 20
|
Tuesday - Homomorphisms and Normal Groups, Thursday - Isomorphism Theorems
|
3
|
Sep 27
|
Class Photo, HW1, HW1 solution
|
4
|
Oct 4
|
|
5
|
Oct 11
|
HW2, HW2 solution
|
6
|
Oct 18
|
|
7
|
Oct 25
|
Term Test
|
8
|
Nov 1
|
HW3, HW3 solution
|
9
|
Nov 8
|
Monday-Tuesday is Fall Break, One Theorem, Two Corollaries, Four Weeks
|
10
|
Nov 15
|
HW4, HW4 solution
|
11
|
Nov 22
|
|
12
|
Nov 29
|
HW5, HW5 solution
|
13
|
Dec 6
|
Boxing Day Handout, see also December 2010 Schedule. Some Class Notes
|
F
|
Dec 13
|
Final exam, Tuesday December 14 10-1, Bahen 6183
|
Register of Good Deeds
|
Add your name / see who's in!
|
See Non Commutative Gaussian Elimination
|
|
In Preparation
The information below is preliminary and cannot be trusted! (v)
This assignment is due by the end of my office hours (at 12:30) on Thursday December 9, 2010.
Solve the following questions
Problem 1. Let be a module over a PID . Assume that is isomorphic to , with non-zero non-units and with . Assume also that is isomorphic to , with non-zero non-units and with . Prove that , , and that for each .
Problem 2. Let and be primes in a PID such that , let denote the operation of "multiplication by ", acting on any -module , and let and be positive integers.
- For each of the -modules , , and , determine and .
- Explain why this approach for proving the uniqueness in the structure theorem for finitely generated modules fails.
Problem 3. (comprehensive exam, 2009) Find the tensor product of the modules ("Laurent polynomials in ") and (here acts on as ).
Problem 4. (from Selick) Show that if is a PID and is a multiplicative subset of then is also a PID.
Definition. The "rank" of a module over a (commutative) domain is the maximal number of -linearly-independent elements of . (Linear dependence and independence is defined as in vector spaces).
Definition. An element of a module over a commutative domain is called a "torsion element" if there is a non-zero such that . Let denote the set of all torsion elements of . (Check that is always a submodule of , but don't bother writing this up). A module is called a "torsion module" if .
Problem 5. (Dummit and Foote, page 468) Let be a module over a commutative domain .
- Suppose that has rank and that is a maximal set of linearly independent elements of . Show that is isomorphic to and that is a torsion module.
- Converesely show that if contains a submodule which is isomorphic to for some , and so that is torsion, then the rank of is .
Problem 6. (see also Dummit and Foote, page 469) Show that the ideal in , regarded as a module over , is finitely generated but cannot be written in the form .