10-1100/Homework Assignment 5

From Drorbn
Revision as of 19:54, 30 November 2010 by Drorbn (talk | contribs)
Jump to navigationJump to search
In Preparation

The information below is preliminary and cannot be trusted! (v)

This assignment is due by the end of my office hours (at 12:30) on Thursday December 9, 2010.

Solve the following questions

Problem 1. Let [math]\displaystyle{ M }[/math] be a module over a PID [math]\displaystyle{ R }[/math]. Assume that [math]\displaystyle{ M }[/math] is isomorphic to [math]\displaystyle{ R^k\oplus R/\langle a_1\rangle\oplus R/\langle a_2\rangle\oplus\cdots\oplus R/\langle a_l\rangle }[/math], with [math]\displaystyle{ a_i }[/math] non-zero non-units and with [math]\displaystyle{ a_1\mid a_2\mid\cdots\mid a_l }[/math]. Assume also that [math]\displaystyle{ M }[/math] is isomorphic to [math]\displaystyle{ R^m\oplus R/\langle b_1\rangle\oplus R/\langle b_2\rangle\oplus\cdots\oplus R/\langle b_n\rangle }[/math], with [math]\displaystyle{ b_i }[/math] non-zero non-units and with [math]\displaystyle{ b_1\mid b_2\mid\cdots\mid b_l }[/math]. Prove that [math]\displaystyle{ k=m }[/math], [math]\displaystyle{ l=n }[/math], and that [math]\displaystyle{ a_i\sim b_i }[/math] for each [math]\displaystyle{ i }[/math].

Problem 2. Let [math]\displaystyle{ q }[/math] and [math]\displaystyle{ p }[/math] be primes in a PID [math]\displaystyle{ R }[/math] such that [math]\displaystyle{ p\not\sim q }[/math], let [math]\displaystyle{ \hat{p} }[/math] denote the operation of "multiplication by [math]\displaystyle{ p }[/math]", acting on any [math]\displaystyle{ R }[/math]-module [math]\displaystyle{ M }[/math], and let [math]\displaystyle{ s }[/math] and [math]\displaystyle{ t }[/math] be positive integers.

  1. For each of the [math]\displaystyle{ R }[/math]-modules [math]\displaystyle{ R }[/math], [math]\displaystyle{ R/\langle q^t\rangle }[/math], and [math]\displaystyle{ R/\langle p^t\rangle }[/math], determine [math]\displaystyle{ \ker\hat{p}^s }[/math] and [math]\displaystyle{ (R/\langle p\rangle)\otimes\ker\hat{p}^s }[/math].
  2. Explain why this approach for proving the uniqueness in the structure theorem for finitely generated modules fails.

Problem 3. (comprehensive exam, 2009) Find the tensor product of the [math]\displaystyle{ {\mathbb C}[t] }[/math] modules [math]\displaystyle{ {\mathbb C}[t,t^{-1}] }[/math] ("Laurent polynomials in [math]\displaystyle{ t }[/math]") and [math]\displaystyle{ {\mathbb C} }[/math] (here [math]\displaystyle{ t }[/math] acts on [math]\displaystyle{ {\mathbb C} }[/math] as [math]\displaystyle{ 0 }[/math]).

Problem 4. (from Selick) Show that if [math]\displaystyle{ R }[/math] is a PID and [math]\displaystyle{ S }[/math] is a multiplicative subset of [math]\displaystyle{ R }[/math] then [math]\displaystyle{ S^{-1}R }[/math] is also a PID.

Definition. The "rank" of a module [math]\displaystyle{ M }[/math] over a (commutative) domain [math]\displaystyle{ R }[/math] is the maximal number of [math]\displaystyle{ R }[/math]-linearly-independent elements of [math]\displaystyle{ M }[/math]. (Linear dependence and independence is defined as in vector spaces).

Definition. An element [math]\displaystyle{ m }[/math] of a module [math]\displaystyle{ M }[/math] over a commutative domain [math]\displaystyle{ R }[/math] is called a "torsion element" if there is a non-zero [math]\displaystyle{ r\in R }[/math] such that [math]\displaystyle{ rm=0 }[/math]. Let [math]\displaystyle{ \mbox{Tor }M }[/math] denote the set of all torsion elements of [math]\displaystyle{ M }[/math]. (Check that [math]\displaystyle{ \mbox{Tor }M }[/math] is always a submodule of [math]\displaystyle{ M }[/math], but don't bother writing this up). A module [math]\displaystyle{ M }[/math] is called a "torsion module" if [math]\displaystyle{ M=\mbox{Tor }M }[/math].

Problem 5. (Dummit and Foote, page 468) Let [math]\displaystyle{ M }[/math] be a module over a commutative domain [math]\displaystyle{ R }[/math].

  1. Suppose that [math]\displaystyle{ M }[/math] has rank [math]\displaystyle{ n }[/math] and that [math]\displaystyle{ x_1,\ldots x_n }[/math] is a maximal set of linearly independent elements of [math]\displaystyle{ M }[/math]. Show that [math]\displaystyle{ \langle x_1,\ldots x_n\rangle }[/math] is isomorphic to [math]\displaystyle{ R^n }[/math] and that [math]\displaystyle{ M/\langle x_1,\ldots x_n\rangle }[/math] is a torsion module.
  2. Converesely show that if [math]\displaystyle{ M }[/math] contains a submodule [math]\displaystyle{ N }[/math] which is isomorphic to [math]\displaystyle{ R^n }[/math] for some [math]\displaystyle{ n }[/math], and so that [math]\displaystyle{ M/N }[/math] is torsion, then the rank of [math]\displaystyle{ M }[/math] is [math]\displaystyle{ n }[/math].

Problem 6. (see also Dummit and Foote, page 469) Show that the ideal [math]\displaystyle{ \langle 2,x\rangle }[/math] in [math]\displaystyle{ R={\mathbb Z}[x] }[/math], regarded as a module over [math]\displaystyle{ R }[/math], is finitely generated but cannot be written in the form [math]\displaystyle{ R^k\oplus\bigoplus R/\langle p_i^{s_i}\rangle }[/math].