09-240/Classnotes for Tuesday September 15: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
(Incomplete notes.)
Line 1: Line 1:
[[Image:Classnotes For Tuesday, September 15.jpg]]
[[Image:Classnotes For Tuesday, September 15.jpg]]

The real numbers A set <math>\mathbb R</math> with two binary operators and two special elements <math>0, 1 \in \mathbb R</math> s.t.

: <math>F1.\quad \forall a, b \in \mathbb R, a + b = b + a \mbox{ and } a \cdot b = b \cdot a</math>
: <math>F2.\quad \forall a, b, c, (a + b) + c = a + (b + c) \mbox{ and } (a \cdot b) \cdot c = a \cdot (b \cdot c)</math>
: <math>\mbox{(So for any real numbers } a_1, a_2, ..., a_n, \mbox{ one can sum them in any order and achieve the same result.}</math>
: <math>F3.\quad \forall a, a + 0 = a \mbox{ and } a \cdot 0 = 0 \mbox{ and } a \cdot 1 = a</math>
: <math>F4.\quad \forall a, \exists b, a + b = 0 \mbox{ and } \forall a \ne 0, \exists b, a \cdot b = 1</math>
: <math>\mbox{So } a + (-a) = 0 \mbox{ and } a \cdot a^{-1} = 1</math>
: <math>\mbox{(So } (a + b) \cdot (a - b) = a^2 - b^2)</math>
: <math>\forall a, \exists x, x \cdot x = a \mbox{ or } a + x \cdot x = 0</math>
: Note: '''or''' means '''inclusive or''' in math.
: <math>F5.\quad (a + b) \cdot c = a \cdot c + b \cdot c</math>

<u>Definition</u>: A '''field''' is a set ''F'' with two binary operators <math>\,\!+</math>: ''F''×''F'' → ''F'', <math>\times\,\!</math>: ''F''×''F'' → ''F'' and two elements <math>0, 1 \in \mathbb R</math> s.t.
: <math>F1 \mbox{Commutativity } a + b = b + a \mbox{ and } a \cdot b = b \cdot a \forall a, b \in F</math>
: <math>F2 \mbox{Associativity } (a + b) + c = a + (b + c) \mbox{ and } (a \cdot b) \cdot c = a \cdot (b \cdot c)</math>
: <math>F3 a + 0 = a, a \cdot 1 = a</math>
: <math>F4 \forall a, \exists b, a + b = 0 \mbox{ and } \forall a \ne 0, \exists b, a \cdot b = 1</math>
: <math>F5 \mbox{Distributivity } (a + b) \cdot c = a \cdot c + b \cdot c</math>

== Examples ==

# <math>F = \mathbb R</math>
# <math>F = \mathbb Q</math>
# <math>\mathbb C = \{ a + bi : a, b \in \mathbb R \}</math>
#: <math>i = \sqrt{-1}</math>
#: <math>\,\!(a + bi) + (c + di) = (a + c) + (b + d)i</math>
#: <math>\,\!0 = 0 + 0i, 1 = 1 + 0i</math>
# <math>\,\!F_2 = \{ 0, 1 \}</math>

...

Revision as of 17:55, 15 September 2009

File:Classnotes For Tuesday, September 15.jpg

The real numbers A set with two binary operators and two special elements s.t.

Note: or means inclusive or in math.

Definition: A field is a set F with two binary operators : F×FF, : F×FF and two elements s.t.

Examples

...