06-240/Classnotes For Tuesday, September 12: Difference between revisions

From Drorbn
Jump to navigationJump to search
m (changed file name)
No edit summary
Line 18: Line 18:
<math>\mathbb{R}4:\forall a\in \mathbb{R} \ \exists b\in \mathbb(R) \mbox{ s.th.} \ a+b=0</math>
<math>\mathbb{R}4:\forall a\in \mathbb{R} \ \exists b\in \mathbb(R) \mbox{ s.th.} \ a+b=0</math>


This is incomplete.
This takes way too long. It is probably more practical to type the notes in Word and upload it onto the site, if we want a typesetted version of the notes.

Revision as of 14:45, 8 October 2006

Notes

The Real Numbers

The Real Numbers are a set (denoted by [math]\displaystyle{ \mathbb{R} }[/math]) along with two binary operations: + (plus) and · (times) and two special elements: 0 (zero) and 1 (one), such that the following laws hold true:
[math]\displaystyle{ \mathbb{R}1:\forall a, b\in \mathbb{R}\mbox{ s.th.} \quad a+b=b+a \quad \mbox{and} \quad a\cdot b=b\cdot a }[/math] (The Commutative Laws)
[math]\displaystyle{ \mathbb{R}2:\forall a, b, c\in \mathbb{R}\mbox{ s.th.} \quad (a+b)+c=a+(b+c) \quad \mbox{and} \quad (a\cdot b)\cdot c=a\cdot (b\cdot c) }[/math] (The Associative Laws)
[math]\displaystyle{ \mathbb{R}3:0\mbox{ is an additive unit} \quad \mbox{and} \quad 1\mbox{ is a multiplicative unit} }[/math] (The Existence of Units/Identities)
[math]\displaystyle{ \mathbb{R}4:\forall a\in \mathbb{R} \ \exists b\in \mathbb(R) \mbox{ s.th.} \ a+b=0 }[/math]

This is incomplete.