06-240/Classnotes For Tuesday September 26: Difference between revisions
From Drorbn
Jump to navigationJump to search
(Added scan of Week 3 Lecture 1 notes) |
No edit summary |
||
Line 1: | Line 1: | ||
{{06-240/Navigation}} |
{{06-240/Navigation}} |
||
===Links to Classnotes=== |
|||
* Classnote for Tuesday Sept 26 [http://www.megaupload.com/?d=4L41DERL] |
* Classnote for Tuesday Sept 26 [http://www.megaupload.com/?d=4L41DERL] |
||
* PDF file by [[User:Alla]]: [[Media:MAT_Lect005.pdf|Week 3 Lecture 1 notes]] |
* PDF file by [[User:Alla]]: [[Media:MAT_Lect005.pdf|Week 3 Lecture 1 notes]] |
||
---- |
|||
===Vector Spaces=== |
|||
'''Example 5.''' <br> |
|||
<math>\mbox{Polynomials:}{}_{}^{}</math> <br> |
|||
<math>7x^3+9x^2-2x+\pi\ </math> <br> |
|||
<math>\mbox{Let } \mathcal{F }\ \mbox{be a field.}</math> <br> |
|||
<math>P(\mathcal{F})=\bigg\{ \sum_{i=1}^n a_i x^i :n \in \mathbb{Z}\,\ n\ge 0\ \forall i\ \ a_i \in \mathcal{F} \bigg\} {}_{}^{} </math> |
|||
<math> \mbox{Addition of polynomials is defined in the expected way:}{}_{}^{} </math> <br> |
|||
<math> \sum_{i=0}^n a_i x^i + \sum_{i=1}^m b_i x^i =\sum_{i=0}^{max(m,n)}{(a_i+b_i)} x^i </math> <br> |
|||
'''Theorem 1.'''(Cancellation law for vector spaces)<br> |
|||
<math> \mbox{If in a vector space x+z=y+z then x=y.}{}_{}^{} </math> <br> |
|||
'''Proof:'''<br> |
|||
<math> \mbox{Add w to both sides of a given equation where w is an element}{}_{}^{} </math> |
|||
<math> \mbox{for which z+w=0 (exists by VS4)}{}_{}^{} </math> <br> |
|||
<math>(x+y)+w=(y+z)+w \ </math> <br> |
|||
<math> x+(z+w)=y+(z+w)\ \mbox{(by VS2)} {}_{}^{} </math> <br> |
|||
<math> x+0=y+0\ \mbox{(by the choice of w)} {}_{}^{} </math> <br> |
|||
<math> x=y\ \mbox{(by VS3)} {}_{}^{} </math> <br> |
|||
'''Theorem 2.''' "0 is unique" <br> |
|||
<math> \mbox{If some z}\in\mbox{V satisfies x+z=0 for some x}\in \mbox{V then z=0.} {}_{}^{} </math> <br> |
|||
'''Proof:"<br> |
|||
<math>x+z=x+0\ </math> <br> |
|||
<math>z+x=0+x\ </math> <br> |
|||
<math>z=0\ </math> <br> |
|||
'''Theorem 3.''' "negatives are unique"<br> |
|||
<math> \mbox{If x+y=0 and x+z=0 then y=z.} {}_{}^{} </math> <br> |
|||
'''Theorem 4.'''<br> |
|||
a)<math>0_F.x=0_V\ </math> <br> |
|||
b)<math>a.0_V=0_V\ </math> <br> |
|||
c)<math>(-a)x=a(-x)=-(ax)\ </math> <br> |
|||
'''Theorem 5.'''<br> |
|||
<math> \mbox{If } x_i\ \mbox{ i=1,...,n are in V then } \sum {x_i}=x_1+x_2+...+x_n\ \mbox{ makes sense whichever way you parse it.} {}_{}^{} </math> <br> |
|||
<math> \mbox{(From VS1 and VS2)} {}_{}^{} </math> <br> |
|||
---- |
|||
===Subspaces=== |
|||
'''Definition'''<br> |
|||
<math> \mbox{Let V be a vector space. A subspace of V is a subset W of V which is a vector space in itself under the operations is inherits from V.}{}_{}^{} </math> <br> |
|||
'''Theorem'''<br> |
|||
<math>W\subset V\ \mbox{is a subspace of V iff}{}_{}^{} </math> <br> |
|||
#<math>\forall x,y\in W\ \ x+y\in W \ </math> |
|||
#<math> \forall a\in F,\ \forall x\in W\ \ ax\in W\ </math> |
|||
#<math>0 \in W\ </math> <br> |
|||
'''Proof'''<br> |
|||
<math>\Rightarrow </math> <br> |
|||
<math>\mbox{Assume W is a subspace. If x,y} \in \mbox{W then x+y} \in \mbox{W because W is a vector space in itself. Likewise for a.w.}{}_{}^{} </math> <br> |
|||
<math>\Leftarrow </math> <br> |
|||
<math>\mbox{Assume W}\subset \mbox{V for which } x,y\in W\Rightarrow x+y\in W\ ; x\in W, a\in F \Rightarrow ax\in W.\ {}_{}^{} </math> <br> |
|||
<math>\mbox{We need to show that W is a vector space. Addition and multiplication are clearly defined on W so we just need to check VS1-VS8.}{}_{}^{} </math> <br> |
|||
<math> \mbox{Indeed, VS1, VS2, VS5, VS6, VS7, and VS8 hold in V hence in W.}{}_{}^{} </math> <br> |
|||
<math> \mbox{VS3-pick any x}\in W\ \ 0=0.x\in W\ by\ 2.\ {}_{}^{} </math> <br> |
|||
<math> \mbox{VS4-given x in W, take y=(-1).x}\in W\ and\ x+y=0.\ {}_{}^{} </math> <br> |
|||
<u>Examples</u><br> |
|||
'''Example 1.'''<br> |
|||
'''Definition'''<br> |
|||
<math> \mbox{If A}\in M_{m\times n}(F) \mbox{ the transpose of A, } A^t \mbox{ is the matrix } (A^t)_{ij}:=A_{ji}. {}_{}^{} </math> <br> |
|||
<math> \begin{pmatrix} 2 & 3 & \pi\ \\ 7 & 8 & -2 \end{pmatrix}^t = \begin{pmatrix} 2 & 7 \\ 3 & 8 \\ \pi\ & -2 \end{pmatrix} </math> <br> |
|||
<math> \mbox{Then:} {}_{}^{} </math> <br> |
|||
#<math>A^t \in M_{n\times m}(F)\ </math> <br> |
|||
#<math>(A^t)^t=A\ </math> <br> |
|||
#<math>(A+B)^t=A^t+B^t\ </math> <br> |
|||
#<math>(cA)^t=c(A^t)\ \forall c\in F\ </math> <br> |
|||
'''Definition'''<br> |
|||
<math>A\in M_{n\times n}(F) \mbox{ is called symmetric if } A^t=A. \ {}_{}^{} </math> <br> |
|||
<u>Claim</u><br> |
|||
<math>V=M_{n\times n}(F) \ \mbox{ is a vector space. Let } \ W=\big\{ \mbox{symmetric A-s in V}\big\} = \big\{ A\in V: A^t=A \big\}\ \mbox{ then W is a subspace of V.} {}_{}^{} </math> <br> |
|||
<u>Proof</u><br> |
|||
1.<math> \mbox{Need to show that if } A\in W and\ B\in W\ then\ A+B\in W. \ {}_{}^{} </math> <br> |
|||
<math>A^t=A,\ B^t=B \ </math> <br> |
|||
<math>(A+B)^t=A^t+B^t=A+B\ so\ A+B\in W. </math> <br> |
|||
<math>\mbox{If } A\in W,\ c\in F \mbox{ need to show } cA\in W {}_{}^{} </math> <br> |
|||
<math>(cA)^t=cA^t=cA\ \Rightarrow cA\in W </math> <br> |
|||
3.<math>0_M=\begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{pmatrix} \Rightarrow 0^t=0 \ so \ 0\in W</math> <br> |
|||
'''Example 2.'''<br> |
|||
<math>V=M_{n\times n}(F) </math> <br> |
|||
<math>A=A_{ij}\ \ trA=\sum_{i=1}^n A_{ii}\ \mbox{(the trace of A)} </math> <br> |
|||
<math> \mbox{Properties of tr:}{}_{}^{} </math> <br> |
|||
#<math>tr0_M=0 \ </math> <br> |
|||
#<math>tr(A+B)=tr(A)+tr(B) \ </math> <br> |
|||
#<math> tr(cA)=c.trA \ </math> <br> |
|||
<math>A=\begin{pmatrix} 1 & 0 \\ 0 & 0\end{pmatrix}\ \ B=\begin{pmatrix} 0 & 0 \\ 0 & 1\end{pmatrix} \ </math> <br> |
|||
<math>trA=1\ \ trB=1 \ </math> <br> |
|||
<math>Set\ \ W=\big\{A\in V: trA=0\big\}=\bigg\{\begin{pmatrix} 1 & 7 \\ \pi\ & -1\end{pmatrix},...\bigg\} \ </math> <br> |
|||
<u>Claim</u> |
|||
<math> \mbox{W is a subspace.}{}_{}^{} </math> <br> |
|||
<math> \mbox{Indeed,}{}_{}^{} </math> <br> |
|||
#<math>A,B\in W \Rightarrow trA=0=trB\ \ tr(A+B)=tr(A)+tr(B)=0+0=0\ so\ A+B\in W\ </math> |
|||
#<math>A\in W\ \ trA=0\ \ tr(cA)=c(trA)=c.0=0\ so\ cA\in W\ </math> |
|||
#<math>tr0_M=0\ \ 0_M\in W \ </math> |
|||
'''Example 3.'''<br> |
|||
<math> W_3=\big\{ A\in M_{n\times n}(F): trA=1\big\} \mbox{ Not a subspace.} {}_{}^{} </math> <br> |
|||
<math> A,B\in W_3 \Rightarrow tr(A+B)=trA+trB=1+1=2\ so\ A+B\ \not\in W_3\ </math> <br> |
|||
'''Theorem'''<br> |
|||
<math> \mbox{The intersection of two subspaces of the same space is always a subspace.}{}_{}^{}</math><br> |
|||
<math> \mbox{Assume }W_1\subset V \mbox{ is a subspace of V, } W_2\subset V \mbox{ is a subspace of V, then }W_1\cap W_2=\big\{ x: x\in W_1 \ and\ x\in W_2\big\} \mbox{ is a subspace.}{}_{}^{} </math> <br> |
|||
<math>\mbox{However, }W_1\cup W_2=\big\{x: x\in W_1\ or\ W_2\big\} \mbox{ is most often not a subspace.} {}_{}^{}</math> <br> |
|||
'''Proof'''<br> |
|||
1.<math> \mbox{Assume }x,y \in W_1\cap W_2 \mbox{ , that is, } x\in W_1, x\in W_2, y\in W_1, y\in W_2. \ {}_{}^{} </math><br> |
|||
<math> x+y\in W_1 \ as\ x,y\in W_1 \mbox{ and } W_1 \mbox{ is a subspace}{}_{}^{} </math><br> |
|||
<math> x+y\in W_2 \ as\ x,y\in W_2 \mbox{ and } W_2 \mbox{ is a subspace}{}_{}^{} </math><br> |
|||
<math> \mbox{So }x+y \in W_1\cap W_2. \ {}_{}^{} </math><br> |
|||
2.<math>\mbox{If} \ x\in W_1\cap W_2\ then\ x\in W_1 \Rightarrow cx\in W_1\ ,\ x\in W_2 \Rightarrow cx\in W_2\ \Rightarrow cx\in W_1\cap W_2. \ {}_{}^{} </math><br> |
|||
3.<math>0 \in W_1\ ,\ 0\in W_2 \Rightarrow 0\in W_1\cap W_2. \ </math> |
Revision as of 19:45, 1 October 2006
|
Links to Classnotes
- Classnote for Tuesday Sept 26 [1]
- PDF file by User:Alla: Week 3 Lecture 1 notes
Vector Spaces
Example 5.
Theorem 1.(Cancellation law for vector spaces)
Proof:
Theorem 2. "0 is unique"
Proof:"
Theorem 3. "negatives are unique"
Theorem 4.
a)
b)
c)
Theorem 5.
Subspaces
Definition
Theorem
Proof
Examples
Example 1.
Definition
Definition
Claim
Proof
1.
3.
Example 2.
Claim
Example 3.
Theorem
Proof
1.
2.
3.