06-240/Classnotes For Tuesday September 26: Difference between revisions

From Drorbn
Jump to navigationJump to search
(Added scan of Week 3 Lecture 1 notes)
No edit summary
Line 1: Line 1:
{{06-240/Navigation}}
{{06-240/Navigation}}


===Links to Classnotes===
* Classnote for Tuesday Sept 26 [http://www.megaupload.com/?d=4L41DERL]
* Classnote for Tuesday Sept 26 [http://www.megaupload.com/?d=4L41DERL]
* PDF file by [[User:Alla]]: [[Media:MAT_Lect005.pdf|Week 3 Lecture 1 notes]]
* PDF file by [[User:Alla]]: [[Media:MAT_Lect005.pdf|Week 3 Lecture 1 notes]]
----
===Vector Spaces===

'''Example 5.''' <br>

<math>\mbox{Polynomials:}{}_{}^{}</math> <br>

<math>7x^3+9x^2-2x+\pi\ </math> <br>

<math>\mbox{Let } \mathcal{F }\ \mbox{be a field.}</math> <br>

<math>P(\mathcal{F})=\bigg\{ \sum_{i=1}^n a_i x^i :n \in \mathbb{Z}\,\ n\ge 0\ \forall i\ \ a_i \in \mathcal{F} \bigg\} {}_{}^{} </math>

<math> \mbox{Addition of polynomials is defined in the expected way:}{}_{}^{} </math> <br>

<math> \sum_{i=0}^n a_i x^i + \sum_{i=1}^m b_i x^i =\sum_{i=0}^{max(m,n)}{(a_i+b_i)} x^i </math> <br>


'''Theorem 1.'''(Cancellation law for vector spaces)<br>

<math> \mbox{If in a vector space x+z=y+z then x=y.}{}_{}^{} </math> <br>

'''Proof:'''<br>

<math> \mbox{Add w to both sides of a given equation where w is an element}{}_{}^{} </math>
<math> \mbox{for which z+w=0 (exists by VS4)}{}_{}^{} </math> <br>

<math>(x+y)+w=(y+z)+w \ </math> <br>

<math> x+(z+w)=y+(z+w)\ \mbox{(by VS2)} {}_{}^{} </math> <br>

<math> x+0=y+0\ \mbox{(by the choice of w)} {}_{}^{} </math> <br>

<math> x=y\ \mbox{(by VS3)} {}_{}^{} </math> <br>


'''Theorem 2.''' "0 is unique" <br>

<math> \mbox{If some z}\in\mbox{V satisfies x+z=0 for some x}\in \mbox{V then z=0.} {}_{}^{} </math> <br>

'''Proof:"<br>

<math>x+z=x+0\ </math> <br>

<math>z+x=0+x\ </math> <br>
<math>z=0\ </math> <br>


'''Theorem 3.''' "negatives are unique"<br>

<math> \mbox{If x+y=0 and x+z=0 then y=z.} {}_{}^{} </math> <br>


'''Theorem 4.'''<br>

a)<math>0_F.x=0_V\ </math> <br>

b)<math>a.0_V=0_V\ </math> <br>

c)<math>(-a)x=a(-x)=-(ax)\ </math> <br>


'''Theorem 5.'''<br>

<math> \mbox{If } x_i\ \mbox{ i=1,...,n are in V then } \sum {x_i}=x_1+x_2+...+x_n\ \mbox{ makes sense whichever way you parse it.} {}_{}^{} </math> <br>

<math> \mbox{(From VS1 and VS2)} {}_{}^{} </math> <br>
----
===Subspaces===

'''Definition'''<br>

<math> \mbox{Let V be a vector space. A subspace of V is a subset W of V which is a vector space in itself under the operations is inherits from V.}{}_{}^{} </math> <br>

'''Theorem'''<br>

<math>W\subset V\ \mbox{is a subspace of V iff}{}_{}^{} </math> <br>

#<math>\forall x,y\in W\ \ x+y\in W \ </math>
#<math> \forall a\in F,\ \forall x\in W\ \ ax\in W\ </math>
#<math>0 \in W\ </math> <br>

'''Proof'''<br>
<math>\Rightarrow </math> <br>

<math>\mbox{Assume W is a subspace. If x,y} \in \mbox{W then x+y} \in \mbox{W because W is a vector space in itself. Likewise for a.w.}{}_{}^{} </math> <br>

<math>\Leftarrow </math> <br>

<math>\mbox{Assume W}\subset \mbox{V for which } x,y\in W\Rightarrow x+y\in W\ ; x\in W, a\in F \Rightarrow ax\in W.\ {}_{}^{} </math> <br>

<math>\mbox{We need to show that W is a vector space. Addition and multiplication are clearly defined on W so we just need to check VS1-VS8.}{}_{}^{} </math> <br>

<math> \mbox{Indeed, VS1, VS2, VS5, VS6, VS7, and VS8 hold in V hence in W.}{}_{}^{} </math> <br>

<math> \mbox{VS3-pick any x}\in W\ \ 0=0.x\in W\ by\ 2.\ {}_{}^{} </math> <br>

<math> \mbox{VS4-given x in W, take y=(-1).x}\in W\ and\ x+y=0.\ {}_{}^{} </math> <br>


<u>Examples</u><br>

'''Example 1.'''<br>

'''Definition'''<br>

<math> \mbox{If A}\in M_{m\times n}(F) \mbox{ the transpose of A, } A^t \mbox{ is the matrix } (A^t)_{ij}:=A_{ji}. {}_{}^{} </math> <br>

<math> \begin{pmatrix} 2 & 3 & \pi\ \\ 7 & 8 & -2 \end{pmatrix}^t = \begin{pmatrix} 2 & 7 \\ 3 & 8 \\ \pi\ & -2 \end{pmatrix} </math> <br>

<math> \mbox{Then:} {}_{}^{} </math> <br>

#<math>A^t \in M_{n\times m}(F)\ </math> <br>
#<math>(A^t)^t=A\ </math> <br>
#<math>(A+B)^t=A^t+B^t\ </math> <br>
#<math>(cA)^t=c(A^t)\ \forall c\in F\ </math> <br>

'''Definition'''<br>

<math>A\in M_{n\times n}(F) \mbox{ is called symmetric if } A^t=A. \ {}_{}^{} </math> <br>

<u>Claim</u><br>

<math>V=M_{n\times n}(F) \ \mbox{ is a vector space. Let } \ W=\big\{ \mbox{symmetric A-s in V}\big\} = \big\{ A\in V: A^t=A \big\}\ \mbox{ then W is a subspace of V.} {}_{}^{} </math> <br>

<u>Proof</u><br>


1.<math> \mbox{Need to show that if } A\in W and\ B\in W\ then\ A+B\in W. \ {}_{}^{} </math> <br>

<math>A^t=A,\ B^t=B \ </math> <br>

<math>(A+B)^t=A^t+B^t=A+B\ so\ A+B\in W. </math> <br>

<math>\mbox{If } A\in W,\ c\in F \mbox{ need to show } cA\in W {}_{}^{} </math> <br>

<math>(cA)^t=cA^t=cA\ \Rightarrow cA\in W </math> <br>

3.<math>0_M=\begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{pmatrix} \Rightarrow 0^t=0 \ so \ 0\in W</math> <br>

'''Example 2.'''<br>

<math>V=M_{n\times n}(F) </math> <br>

<math>A=A_{ij}\ \ trA=\sum_{i=1}^n A_{ii}\ \mbox{(the trace of A)} </math> <br>

<math> \mbox{Properties of tr:}{}_{}^{} </math> <br>

#<math>tr0_M=0 \ </math> <br>
#<math>tr(A+B)=tr(A)+tr(B) \ </math> <br>
#<math> tr(cA)=c.trA \ </math> <br>

<math>A=\begin{pmatrix} 1 & 0 \\ 0 & 0\end{pmatrix}\ \ B=\begin{pmatrix} 0 & 0 \\ 0 & 1\end{pmatrix} \ </math> <br>
<math>trA=1\ \ trB=1 \ </math> <br>

<math>Set\ \ W=\big\{A\in V: trA=0\big\}=\bigg\{\begin{pmatrix} 1 & 7 \\ \pi\ & -1\end{pmatrix},...\bigg\} \ </math> <br>

<u>Claim</u>

<math> \mbox{W is a subspace.}{}_{}^{} </math> <br>

<math> \mbox{Indeed,}{}_{}^{} </math> <br>
#<math>A,B\in W \Rightarrow trA=0=trB\ \ tr(A+B)=tr(A)+tr(B)=0+0=0\ so\ A+B\in W\ </math>
#<math>A\in W\ \ trA=0\ \ tr(cA)=c(trA)=c.0=0\ so\ cA\in W\ </math>
#<math>tr0_M=0\ \ 0_M\in W \ </math>

'''Example 3.'''<br>

<math> W_3=\big\{ A\in M_{n\times n}(F): trA=1\big\} \mbox{ Not a subspace.} {}_{}^{} </math> <br>
<math> A,B\in W_3 \Rightarrow tr(A+B)=trA+trB=1+1=2\ so\ A+B\ \not\in W_3\ </math> <br>

'''Theorem'''<br>
<math> \mbox{The intersection of two subspaces of the same space is always a subspace.}{}_{}^{}</math><br>
<math> \mbox{Assume }W_1\subset V \mbox{ is a subspace of V, } W_2\subset V \mbox{ is a subspace of V, then }W_1\cap W_2=\big\{ x: x\in W_1 \ and\ x\in W_2\big\} \mbox{ is a subspace.}{}_{}^{} </math> <br>
<math>\mbox{However, }W_1\cup W_2=\big\{x: x\in W_1\ or\ W_2\big\} \mbox{ is most often not a subspace.} {}_{}^{}</math> <br>

'''Proof'''<br>

1.<math> \mbox{Assume }x,y \in W_1\cap W_2 \mbox{ , that is, } x\in W_1, x\in W_2, y\in W_1, y\in W_2. \ {}_{}^{} </math><br>
<math> x+y\in W_1 \ as\ x,y\in W_1 \mbox{ and } W_1 \mbox{ is a subspace}{}_{}^{} </math><br>
<math> x+y\in W_2 \ as\ x,y\in W_2 \mbox{ and } W_2 \mbox{ is a subspace}{}_{}^{} </math><br>
<math> \mbox{So }x+y \in W_1\cap W_2. \ {}_{}^{} </math><br>

2.<math>\mbox{If} \ x\in W_1\cap W_2\ then\ x\in W_1 \Rightarrow cx\in W_1\ ,\ x\in W_2 \Rightarrow cx\in W_2\ \Rightarrow cx\in W_1\cap W_2. \ {}_{}^{} </math><br>

3.<math>0 \in W_1\ ,\ 0\in W_2 \Rightarrow 0\in W_1\cap W_2. \ </math>

Revision as of 18:45, 1 October 2006

Links to Classnotes


Vector Spaces

Example 5.

[math]\displaystyle{ \mbox{Polynomials:}{}_{}^{} }[/math]

[math]\displaystyle{ 7x^3+9x^2-2x+\pi\ }[/math]

[math]\displaystyle{ \mbox{Let } \mathcal{F }\ \mbox{be a field.} }[/math]

[math]\displaystyle{ P(\mathcal{F})=\bigg\{ \sum_{i=1}^n a_i x^i :n \in \mathbb{Z}\,\ n\ge 0\ \forall i\ \ a_i \in \mathcal{F} \bigg\} {}_{}^{} }[/math]

[math]\displaystyle{ \mbox{Addition of polynomials is defined in the expected way:}{}_{}^{} }[/math]

[math]\displaystyle{ \sum_{i=0}^n a_i x^i + \sum_{i=1}^m b_i x^i =\sum_{i=0}^{max(m,n)}{(a_i+b_i)} x^i }[/math]


Theorem 1.(Cancellation law for vector spaces)

[math]\displaystyle{ \mbox{If in a vector space x+z=y+z then x=y.}{}_{}^{} }[/math]

Proof:

[math]\displaystyle{ \mbox{Add w to both sides of a given equation where w is an element}{}_{}^{} }[/math] [math]\displaystyle{ \mbox{for which z+w=0 (exists by VS4)}{}_{}^{} }[/math]

[math]\displaystyle{ (x+y)+w=(y+z)+w \ }[/math]

[math]\displaystyle{ x+(z+w)=y+(z+w)\ \mbox{(by VS2)} {}_{}^{} }[/math]

[math]\displaystyle{ x+0=y+0\ \mbox{(by the choice of w)} {}_{}^{} }[/math]

[math]\displaystyle{ x=y\ \mbox{(by VS3)} {}_{}^{} }[/math]


Theorem 2. "0 is unique"

[math]\displaystyle{ \mbox{If some z}\in\mbox{V satisfies x+z=0 for some x}\in \mbox{V then z=0.} {}_{}^{} }[/math]

Proof:"

[math]\displaystyle{ x+z=x+0\ }[/math]

[math]\displaystyle{ z+x=0+x\ }[/math]
[math]\displaystyle{ z=0\ }[/math]


Theorem 3. "negatives are unique"

[math]\displaystyle{ \mbox{If x+y=0 and x+z=0 then y=z.} {}_{}^{} }[/math]


Theorem 4.

a)[math]\displaystyle{ 0_F.x=0_V\ }[/math]

b)[math]\displaystyle{ a.0_V=0_V\ }[/math]

c)[math]\displaystyle{ (-a)x=a(-x)=-(ax)\ }[/math]


Theorem 5.

[math]\displaystyle{ \mbox{If } x_i\ \mbox{ i=1,...,n are in V then } \sum {x_i}=x_1+x_2+...+x_n\ \mbox{ makes sense whichever way you parse it.} {}_{}^{} }[/math]

[math]\displaystyle{ \mbox{(From VS1 and VS2)} {}_{}^{} }[/math]


Subspaces

Definition

[math]\displaystyle{ \mbox{Let V be a vector space. A subspace of V is a subset W of V which is a vector space in itself under the operations is inherits from V.}{}_{}^{} }[/math]

Theorem

[math]\displaystyle{ W\subset V\ \mbox{is a subspace of V iff}{}_{}^{} }[/math]

  1. [math]\displaystyle{ \forall x,y\in W\ \ x+y\in W \ }[/math]
  2. [math]\displaystyle{ \forall a\in F,\ \forall x\in W\ \ ax\in W\ }[/math]
  3. [math]\displaystyle{ 0 \in W\ }[/math]

Proof
[math]\displaystyle{ \Rightarrow }[/math]

[math]\displaystyle{ \mbox{Assume W is a subspace. If x,y} \in \mbox{W then x+y} \in \mbox{W because W is a vector space in itself. Likewise for a.w.}{}_{}^{} }[/math]

[math]\displaystyle{ \Leftarrow }[/math]

[math]\displaystyle{ \mbox{Assume W}\subset \mbox{V for which } x,y\in W\Rightarrow x+y\in W\ ; x\in W, a\in F \Rightarrow ax\in W.\ {}_{}^{} }[/math]

[math]\displaystyle{ \mbox{We need to show that W is a vector space. Addition and multiplication are clearly defined on W so we just need to check VS1-VS8.}{}_{}^{} }[/math]

[math]\displaystyle{ \mbox{Indeed, VS1, VS2, VS5, VS6, VS7, and VS8 hold in V hence in W.}{}_{}^{} }[/math]

[math]\displaystyle{ \mbox{VS3-pick any x}\in W\ \ 0=0.x\in W\ by\ 2.\ {}_{}^{} }[/math]

[math]\displaystyle{ \mbox{VS4-given x in W, take y=(-1).x}\in W\ and\ x+y=0.\ {}_{}^{} }[/math]


Examples

Example 1.

Definition

[math]\displaystyle{ \mbox{If A}\in M_{m\times n}(F) \mbox{ the transpose of A, } A^t \mbox{ is the matrix } (A^t)_{ij}:=A_{ji}. {}_{}^{} }[/math]

[math]\displaystyle{ \begin{pmatrix} 2 & 3 & \pi\ \\ 7 & 8 & -2 \end{pmatrix}^t = \begin{pmatrix} 2 & 7 \\ 3 & 8 \\ \pi\ & -2 \end{pmatrix} }[/math]

[math]\displaystyle{ \mbox{Then:} {}_{}^{} }[/math]

  1. [math]\displaystyle{ A^t \in M_{n\times m}(F)\ }[/math]
  2. [math]\displaystyle{ (A^t)^t=A\ }[/math]
  3. [math]\displaystyle{ (A+B)^t=A^t+B^t\ }[/math]
  4. [math]\displaystyle{ (cA)^t=c(A^t)\ \forall c\in F\ }[/math]

Definition

[math]\displaystyle{ A\in M_{n\times n}(F) \mbox{ is called symmetric if } A^t=A. \ {}_{}^{} }[/math]

Claim

[math]\displaystyle{ V=M_{n\times n}(F) \ \mbox{ is a vector space. Let } \ W=\big\{ \mbox{symmetric A-s in V}\big\} = \big\{ A\in V: A^t=A \big\}\ \mbox{ then W is a subspace of V.} {}_{}^{} }[/math]

Proof


1.[math]\displaystyle{ \mbox{Need to show that if } A\in W and\ B\in W\ then\ A+B\in W. \ {}_{}^{} }[/math]

[math]\displaystyle{ A^t=A,\ B^t=B \ }[/math]

[math]\displaystyle{ (A+B)^t=A^t+B^t=A+B\ so\ A+B\in W. }[/math]

[math]\displaystyle{ \mbox{If } A\in W,\ c\in F \mbox{ need to show } cA\in W {}_{}^{} }[/math]

[math]\displaystyle{ (cA)^t=cA^t=cA\ \Rightarrow cA\in W }[/math]

3.[math]\displaystyle{ 0_M=\begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{pmatrix} \Rightarrow 0^t=0 \ so \ 0\in W }[/math]

Example 2.

[math]\displaystyle{ V=M_{n\times n}(F) }[/math]

[math]\displaystyle{ A=A_{ij}\ \ trA=\sum_{i=1}^n A_{ii}\ \mbox{(the trace of A)} }[/math]

[math]\displaystyle{ \mbox{Properties of tr:}{}_{}^{} }[/math]

  1. [math]\displaystyle{ tr0_M=0 \ }[/math]
  2. [math]\displaystyle{ tr(A+B)=tr(A)+tr(B) \ }[/math]
  3. [math]\displaystyle{ tr(cA)=c.trA \ }[/math]

[math]\displaystyle{ A=\begin{pmatrix} 1 & 0 \\ 0 & 0\end{pmatrix}\ \ B=\begin{pmatrix} 0 & 0 \\ 0 & 1\end{pmatrix} \ }[/math]
[math]\displaystyle{ trA=1\ \ trB=1 \ }[/math]

[math]\displaystyle{ Set\ \ W=\big\{A\in V: trA=0\big\}=\bigg\{\begin{pmatrix} 1 & 7 \\ \pi\ & -1\end{pmatrix},...\bigg\} \ }[/math]

Claim

[math]\displaystyle{ \mbox{W is a subspace.}{}_{}^{} }[/math]

[math]\displaystyle{ \mbox{Indeed,}{}_{}^{} }[/math]

  1. [math]\displaystyle{ A,B\in W \Rightarrow trA=0=trB\ \ tr(A+B)=tr(A)+tr(B)=0+0=0\ so\ A+B\in W\ }[/math]
  2. [math]\displaystyle{ A\in W\ \ trA=0\ \ tr(cA)=c(trA)=c.0=0\ so\ cA\in W\ }[/math]
  3. [math]\displaystyle{ tr0_M=0\ \ 0_M\in W \ }[/math]

Example 3.

[math]\displaystyle{ W_3=\big\{ A\in M_{n\times n}(F): trA=1\big\} \mbox{ Not a subspace.} {}_{}^{} }[/math]
[math]\displaystyle{ A,B\in W_3 \Rightarrow tr(A+B)=trA+trB=1+1=2\ so\ A+B\ \not\in W_3\ }[/math]

Theorem
[math]\displaystyle{ \mbox{The intersection of two subspaces of the same space is always a subspace.}{}_{}^{} }[/math]
[math]\displaystyle{ \mbox{Assume }W_1\subset V \mbox{ is a subspace of V, } W_2\subset V \mbox{ is a subspace of V, then }W_1\cap W_2=\big\{ x: x\in W_1 \ and\ x\in W_2\big\} \mbox{ is a subspace.}{}_{}^{} }[/math]
[math]\displaystyle{ \mbox{However, }W_1\cup W_2=\big\{x: x\in W_1\ or\ W_2\big\} \mbox{ is most often not a subspace.} {}_{}^{} }[/math]

Proof

1.[math]\displaystyle{ \mbox{Assume }x,y \in W_1\cap W_2 \mbox{ , that is, } x\in W_1, x\in W_2, y\in W_1, y\in W_2. \ {}_{}^{} }[/math]
[math]\displaystyle{ x+y\in W_1 \ as\ x,y\in W_1 \mbox{ and } W_1 \mbox{ is a subspace}{}_{}^{} }[/math]
[math]\displaystyle{ x+y\in W_2 \ as\ x,y\in W_2 \mbox{ and } W_2 \mbox{ is a subspace}{}_{}^{} }[/math]
[math]\displaystyle{ \mbox{So }x+y \in W_1\cap W_2. \ {}_{}^{} }[/math]

2.[math]\displaystyle{ \mbox{If} \ x\in W_1\cap W_2\ then\ x\in W_1 \Rightarrow cx\in W_1\ ,\ x\in W_2 \Rightarrow cx\in W_2\ \Rightarrow cx\in W_1\cap W_2. \ {}_{}^{} }[/math]

3.[math]\displaystyle{ 0 \in W_1\ ,\ 0\in W_2 \Rightarrow 0\in W_1\cap W_2. \ }[/math]