|
|
Line 77: |
Line 77: |
|
|
|
|
|
; A Nearly Tautological Lemma |
|
; A Nearly Tautological Lemma |
|
: If <math>P \in Syl_p(G)</math> and <math>H \lea N(P)</math> is a <math>p</math>-group, then <math>H \leq P</math>. |
|
: If <math>P \in Syl_p(G)</math> and <math>H \leq N(P)</math> is a <math>p</math>-group, then <math>H \leq P</math>. |
|
: If <math>x \in G</math> has <math>|<x>| = p^k</math> and <math>x \in N(P)</math> then <math>x \in P</math>. |
|
: If <math>x \in G</math> has <math>|<x>| = p^k</math> and <math>x \in N(P)</math> then <math>x \in P</math>. |
|
|
|
|
- Theorem
- Every -set is a disjoint union of "transitive -sets"
- Theorem
- If is a transitive -set and then where the isomorphism an isomorphism of -sets.
- Transitive -set
- A -set is transitive is .
- Stabilizer of a point
- We write for the stabilizer subgroup of $x$.
Proof We define an equivalence relation . This relation is reflexive since and thus . This relation is symmetric since implies . This relation is transitive, since if and then . It follows that where denote the orbit of a point .
We then claim that is a transitive -set. [Dror: "[This fact] is too easy."]
We show that is isomorphic to as a -set.
We produce two morphism and .
To define there is only one thing we can do. We have and then we define . We check that this map is well defined. If then and hence . It follows that . Thus is well defined.
To define we take and define . We show that this map is well defined. If then and hence . It follows that and hence is well defined.
We need to check that and are mutually inverse and -set morphisms. We quickly check that is a -set morphism. If and then . Similarly, . The last inequality follows since we can take any such that . Why not take -- since we know that works.
- Theorem (Orbit-Stabilizer)
- If and then .
This is just a rewriting of the theorem above.
- -Group
- A -group is a group with for some .
The last group is the famous unit quaternions -- They need a better description here.
- Theorem
- Any -group has a non-trivial centre.
Let act on itself by conjugation. Decompose . Then,
Observe that iff . It follows that
The formula above is called "the class formula". We have that for some since is a subgroup. It follows that and . It follows that . Since we have and thus .
SYLOW
A prove a brief technical lemma, for fun, since we could deduce it from more high powered machinery which we don't have yet.
- Cauchy's Lemma
- If is an abelian group and divides , then there is an element of order in .
Proof. Pick . If divides the order of then we have for some . It follows that . We then have that the order of is . If does not divide the order of , then consider . Since is abelian, is a normal subgroup. We have that divides , and . We then induct. Let have order , that is . We then have that for some . We write where . We then have . It follows that contradicting the assumption that the order of is .
- Sylow set
- If for then .
- Sylow I
We proceed by induction on the oder of $p$. Assume the claim holds for all groups of order less than $|G|$. [Dror: "Stare at the class equation.] Since we have either:
- and .
- and .
If then there exists such that . Thus divides . We have that [Why happens here?] We then have that and by induction there is such that . It follows . We've obtained the Sylow -subgroup.
WIf then by Cauchy's Lemma, there is with . Consider the group . By the induction hypothesis there is where . Then, there is the canonical projection . By the fourth isomorphism theory and .
- Sylow 2
- Every Sylow -subgroup of -subgroup is contained in a Sylow -subgroup.
- Sylow 3
- Let . We have and .
- A Nearly Tautological Lemma
- If and is a -group, then .
- If has and then .
[Dror: "This lemma is nearly tautological but it is only nearly tautological once you understand that it is nearly tautological." Parker: "A tautology?"]
We show the first statement. We have that since is a -group. We then know that by the second isomorphism theorem. It foolows that . But since is maximal, we have and thus . The first statement implies the second by taking .
GROUPS OF ORDER 15
If then and . These imply . Moreover, and . These imply . Thus we have a normal -subgroup. Moreover, we have a normal -subgroup. This tells us a lot about the group.