AKT-09/Navigation: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
{| border="1px" cellpadding="1" cellspacing="0" width="100%" style="font-size: small; align: left"
{| border="1px" cellpadding="1" cellspacing="0" width="100%" style="font-size: small; align: left"
|- align=left
|-
!#
!#
!Week of...
!Week of...
Line 8: Line 8:
|Sep 7
|Sep 7
|[[AKT-09/About This Class|About This Class]]<br/>{{AKT-09/vp|0910-1}}<br/>{{AKT-09/vp|0910-2}}<br/>[[AKT-09/Tricolourability|Tricolourability]]
|[[AKT-09/About This Class|About This Class]]<br/>{{AKT-09/vp|0910-1}}<br/>{{AKT-09/vp|0910-2}}<br/>[[AKT-09/Tricolourability|Tricolourability]]
|- align=left
|-
|align=center|2
|align=center|2
|Sep 14
|Sep 14
|{{AKT-09/vp|0915}}<br/>{{AKT-09/vp|0917-1}}<br/>{{AKT-09/vp|0917-2}}
|{{AKT-09/vp|0915}}<br/>{{AKT-09/vp|0917-1}}<br/>{{AKT-09/vp|0917-2}}
|- align=left
|-
|align=center|3
|align=center|3
|Sep 21
|Sep 21
|{{AKT-09/vp|0922}}<br/>{{AKT-09/vp|0924-1}}<br/>[[AKT-09/Class Photo|Class Photo]]<br/>{{AKT-09/vp|0924-2}}
|{{AKT-09/vp|0922}}<br/>{{AKT-09/vp|0924-1}}<br/>[[AKT-09/Class Photo|Class Photo]]<br/>{{AKT-09/vp|0924-2}}
|- align=left
|-
|align=center|4
|align=center|4
|Sep 28
|Sep 28
|[[AKT-09/HW1|HW1]]
|[[AKT-09/HW1|HW1]]
|- align=left
|-
|align=center|5
|align=center|5
|Oct 5
|Oct 5
|&nbsp;
|&nbsp;
|- align=left
|-
|align=center|6
|align=center|6
|Oct 12
|Oct 12
|[[AKT-09/HW2|HW2]]
|[[AKT-09/HW2|HW2]]
|- align=left
|-
|align=center|7
|align=center|7
|Oct 19
|Oct 19
|&nbsp;
|&nbsp;
|- align=left
|-
|align=center|8
|align=center|8
|Oct 26
|Oct 26
|[[AKT-09/HW3|HW3]]
|[[AKT-09/HW3|HW3]]
|- align=left
|-
|align=center|9
|align=center|9
|Nov 2
|Nov 2
|&nbsp;
|&nbsp;
|- align=left
|-
|align=center|10
|align=center|10
|Nov 9
|Nov 9
|[[AKT-09/HW4|HW4]]<br/>No Thursday class.
|[[AKT-09/HW4|HW4]]<br/>No Thursday class.
|- align=left
|-
|align=center|11
|align=center|11
|Nov 16
|Nov 16
|&nbsp;
|&nbsp;
|- align=left
|-
|align=center|12
|align=center|12
|Nov 23
|Nov 23
|[[AKT-09/HW5|HW5]]
|[[AKT-09/HW5|HW5]]
|- align=left
|-
|align=center|13
|align=center|13
|Nov 30
|Nov 30
|&nbsp;
|&nbsp;
|- align=left
|-
|colspan=3 align=center|[[AKT-09/Register of Good Deeds|Register of Good Deeds]] / [[AKT-09/To Do|To Do List]]
|colspan=3 align=center|[[AKT-09/Register of Good Deeds|Register of Good Deeds]] / [[AKT-09/To Do|To Do List]]
|- align=left
|-
|colspan=3 align=center|[[Image:AKT-09-ClassPhoto.jpg|310px]]<br/>[[AKT-09/Class Photo|Add your name / see who's in!]]
|colspan=3 align=center|[[Image:AKT-09-ClassPhoto.jpg|310px]]<br/>[[AKT-09/Class Photo|Add your name / see who's in!]]
|- align=left
|-
|colspan=3 align=center|[[Image:3x4bbs.jpg|310px]]
|colspan=3 align=center|[[Image:3x4bbs.jpg|310px]]
|}
|}

Revision as of 17:21, 28 September 2009

# Week of... Videos, Notes, and Links
1 Sep 7 About This Class
dbnvp 090910-1: 3-colourings, Reidemeister's theorem, invariance, the Kauffman bracket.
dbnvp 090910-2: R23 invariance of the bracket, R1, the writhe, the Jones polynomial, programming the Jones polynomial.
Tricolourability
2 Sep 14 dbnvp 090915: More on Jones, some pathologies and more on Reidemeister, our overall agenda.
dbnvp 090917-1: The definition of finite type, weight systems, Jones is a finite type series.
dbnvp 090917-2: The skein relation for Jones; HOMFLY-PT and Conway; the weight system of Jones.
3 Sep 21 dbnvp 090922: FI, 4T, HOMFLY and FI and 4T, statement of the Fundamental Theorem, framed knots.
dbnvp 090924-1: Some dimensions of , is a commutative algebra, .
Class Photo
dbnvp 090924-2: is a co-commutative algebra, the relation with products of invariants, is a bi-algebra.
4 Sep 28 HW1
5 Oct 5  
6 Oct 12 HW2
7 Oct 19  
8 Oct 26 HW3
9 Nov 2  
10 Nov 9 HW4
No Thursday class.
11 Nov 16  
12 Nov 23 HW5
13 Nov 30  
Register of Good Deeds / To Do List
AKT-09-ClassPhoto.jpg
Add your name / see who's in!
3x4bbs.jpg