AKT-09/HW1: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 1: Line 1:
{{AKT-09/Navigation}}
{{AKT-09/Navigation}}
{{In Preparation}}


'''Solve the following problems''' and submit them in class by October 13, 2006:
'''Solve the following problems''' and submit them in class by October 13, 2006:
Line 10: Line 9:
{{Equation*|<math>P = \sum_{n=0}^\infty \frac{(-\Theta)^n}{n!}\partial_\theta^n.</math>}}
{{Equation*|<math>P = \sum_{n=0}^\infty \frac{(-\Theta)^n}{n!}\partial_\theta^n.</math>}}


The following assertions can be verified:
Verify the following assertions, but submit only your work on assertions 4,5,7,11:


# <math>\left[\partial_\theta,\Theta\right]=1</math>, where <math>1:{\mathcal A}\to{\mathcal A}</math> is the identity map and where <math>[A,B]:=AB-BA</math> for any two operators.
# <math>\left[\partial_\theta,\Theta\right]=1</math>, where <math>1:{\mathcal A}\to{\mathcal A}</math> is the identity map and where <math>[A,B]:=AB-BA</math> for any two operators.
Line 16: Line 15:
# <math>\partial_\theta</math> satisfies Leibnitz' law: <math>\partial_\theta(ab)=(\partial_\theta a)b+a(\partial_\theta b)</math> for any <math>a,b\in{\mathcal A}</math>.
# <math>\partial_\theta</math> satisfies Leibnitz' law: <math>\partial_\theta(ab)=(\partial_\theta a)b+a(\partial_\theta b)</math> for any <math>a,b\in{\mathcal A}</math>.
# <math>P</math> is an algebra morphism: <math>P1=1</math> and <math>P(ab)=(Pa)(Pb)</math>.
# <math>P</math> is an algebra morphism: <math>P1=1</math> and <math>P(ab)=(Pa)(Pb)</math>.
# <math>\Theta</math> satisfies the co-Leibnitz law: <math>\Box\circ\Theta=(\Theta\otimes 1+1\otimes\Theta)\circ\Box</math> (why does this deserve the name ``the co-Leibnitz law''?).
# <math>\Theta</math> satisfies the co-Leibnitz law: <math>\Box\circ\Theta=(\Theta\otimes 1+1\otimes\Theta)\circ\Box</math> (why does this deserve the name "the co-Leibnitz law"?).
# <math>P</math> is a co-algebra morphism: <math>\eta\circ P=\eta</math> (where <math>\eta</math> is the co-unit of <math>{\mathcal A}</math>) and <math>\Box\circ P=(P\otimes P)\circ\Box</math>.
# <math>P</math> is a co-algebra morphism: <math>\eta\circ P=\eta</math> (where <math>\eta</math> is the co-unit of <math>{\mathcal A}</math>) and <math>\Box\circ P=(P\otimes P)\circ\Box</math>.
# <math>P\theta=0</math> and hence <math>P\langle\theta\rangle=0</math>, where <math>\langle\theta\rangle</math> is the ideal generated by <math>\theta</math> in the algebra <math>{\mathcal A}</math>.
# <math>P\theta=0</math> and hence <math>P\langle\theta\rangle=0</math>, where <math>\langle\theta\rangle</math> is the ideal generated by <math>\theta</math> in the algebra <math>{\mathcal A}</math>.
# If <math>Q:{\mathcal A}\to{\mathcal A}</math> is defined by {{Equation*|<math>Q = \sum_{n=0}^\infty \frac{(-\Theta)^n}{(n+1)!}\partial_\theta^{(n+1)}</math>}} then <math>a=\theta Qa+Pa</math> for all <math>a\in{\mathcal A}</math>.
# If <math>Q:{\mathcal A}\to{\mathcal A}</math> is defined by {{Equation*|<math>Q = \sum_{n=0}^\infty \frac{(-\Theta)^n}{(n+1)!}\partial_\theta^{(n+1)}</math>}} then <math>a=\theta Qa+Pa</math> for all <math>a\in{\mathcal A}</math>.
# <math>\ker P=\langle\theta\rangle</math>.
# <math>\ker P=\langle\theta\rangle</math>.
# <math>P</math> descends to a Hopf algebra morphism <math>{\mathcal A}^r\to{\mathcal A}</math>, and if <math>\pi:{\mathcal A}\to{\mathcal A}^r</math> is the obvious projection, then <math>\pi\circ P</math> is the identity of <math>{\mathcal A}^r</math>. (Recall that <math>{\mathcal A}^r={\mathcal A}/\langle\theta\rangle</math>.)
# <math>P</math> descends to a Hopf algebra morphism <math>{\mathcal A}^r\to{\mathcal A}</math>, and if <math>\pi:{\mathcal A}\to{\mathcal A}^r</math> is the obvious projection, then <math>\pi\circ P</math> is the identity of <math>{\mathcal A}^r</math>. (Recall that <math>{\mathcal A}^r={\mathcal A}/\langle\theta\rangle</math>).
# <math>P^2=P</math>.
# <math>P^2=P</math>.



Revision as of 17:14, 28 September 2009

Solve the following problems and submit them in class by October 13, 2006:

Problem 1. If and then (as what one would expect by looking at degrees of polynomials) and where and is the multiplication of rationals. (See 090924-2, minute 36:01).

Problem 2. Let be the multiplication operator by the 1-chord diagram , and let be the adjoint of multiplication by on , where is the obvious dual of in . Let be defined by

Verify the following assertions, but submit only your work on assertions 4,5,7,11:

  1. , where is the identity map and where for any two operators.
  2. is a degree operator; that is, for all .
  3. satisfies Leibnitz' law: for any .
  4. is an algebra morphism: and .
  5. satisfies the co-Leibnitz law: (why does this deserve the name "the co-Leibnitz law"?).
  6. is a co-algebra morphism: (where is the co-unit of ) and .
  7. and hence , where is the ideal generated by in the algebra .
  8. If is defined by
    then for all .
  9. .
  10. descends to a Hopf algebra morphism , and if is the obvious projection, then is the identity of . (Recall that ).
  11. .

Mandatory but unenforced. Find yourself in the class photo and identify yourself as explained in the photo page.

AKT-09-ClassPhoto.jpg