AKT-09/Navigation: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
Line 19: Line 19:
|align=center|4
|align=center|4
|Sep 28
|Sep 28
|[[AKT-09/HW1|HW1]]
| 
|-
|-
|align=center|5
|align=center|5
Line 27: Line 27:
|align=center|6
|align=center|6
|Oct 12
|Oct 12
|[[AKT-09/HW2|HW2]]
| 
|-
|-
|align=center|7
|align=center|7
Line 35: Line 35:
|align=center|8
|align=center|8
|Oct 26
|Oct 26
|[[AKT-09/HW3|HW3]]
| 
|-
|-
|align=center|9
|align=center|9
Line 43: Line 43:
|align=center|10
|align=center|10
|Nov 9
|Nov 9
|No Thursday class.
|[[AKT-09/HW4|HW4]]<br/>No Thursday class.
|-
|-
|align=center|11
|align=center|11
Line 51: Line 51:
|align=center|12
|align=center|12
|Nov 23
|Nov 23
|[[AKT-09/HW5|HW5]]
|&nbsp;
|-
|-
|align=center|13
|align=center|13

Revision as of 16:24, 28 September 2009

# Week of... Videos, Notes, and Links
1 Sep 7 About This Class
dbnvp 090910-1: 3-colourings, Reidemeister's theorem, invariance, the Kauffman bracket.
dbnvp 090910-2: R23 invariance of the bracket, R1, the writhe, the Jones polynomial, programming the Jones polynomial.
Tricolourability
2 Sep 14 dbnvp 090915: More on Jones, some pathologies and more on Reidemeister, our overall agenda.
dbnvp 090917-1: The definition of finite type, weight systems, Jones is a finite type series.
dbnvp 090917-2: The skein relation for Jones; HOMFLY-PT and Conway; the weight system of Jones.
3 Sep 21 dbnvp 090922: FI, 4T, HOMFLY and FI and 4T, statement of the Fundamental Theorem, framed knots.
dbnvp 090924-1: Some dimensions of , is a commutative algebra, .
Class Photo
dbnvp 090924-2: is a co-commutative algebra, the relation with products of invariants, is a bi-algebra.
4 Sep 28 HW1
5 Oct 5  
6 Oct 12 HW2
7 Oct 19  
8 Oct 26 HW3
9 Nov 2  
10 Nov 9 HW4
No Thursday class.
11 Nov 16  
12 Nov 23 HW5
13 Nov 30  
Register of Good Deeds / To Do List
AKT-09-ClassPhoto.jpg
Add your name / see who's in!
3x4bbs.jpg