14-1100/Homework Assignment 4: Difference between revisions
(Created page with "{{14-1100/Navigation}} {{In Preparation}} This assignment is due at class time on Thursday, November 20, 2011. ===Solve the following questions=== '''Problem 1.''' Prove th...") |
No edit summary |
||
| Line 6: | Line 6: | ||
===Solve the following questions=== |
===Solve the following questions=== |
||
'''Problem 1.''' (Klein's 1983 course) |
|||
'''Problem 1.''' Prove that a ring <math>R</math> is a PID iff it is a UFD in which <math>\gcd(a,b)\in\langle a, b\rangle</math> for every non-zero <math>a,b\in R</math>. |
|||
# Show that the ideal <math>I=\langle 3,\, x^3-x^2+2x-1\rangle</math> inside the ring <math>{\mathbb Z}[x]</math> is not principal. |
|||
# Is <math>{\mathbb Z}[x]/I</math> a domain? |
|||
'''Problem 2.''' |
'''Problem 2.''' Prove that a ring <math>R</math> is a PID iff it is a UFD in which <math>\gcd(a,b)\in\langle a, b\rangle</math> for every non-zero <math>a,b\in R</math>. |
||
'''Problem 3.''' ( |
'''Problem 3.''' (Lang) Show that the ring <math>{\mathbb Z}[i]=\{a+ib\colon a,b\in{\mathbb Z}\}\subset{\mathbb C}</math> is a PID and hence a UFD. What are the units of that ring? |
||
'''Problem 4.''' ( |
'''Problem 4.''' (Dummit and Foote) In <math>{\mathbb Z}[i]</math>, find the greatest common divisor of <math>85</math> and <math>1+13i</math>, and express it as a linear combination of these two elements. |
||
'''Problem 5.''' (Klein's 1983 course) Show that <math>{\mathbb Z}[\sqrt{10}]</math> is not a UFD. |
|||
'''Problem 6.''' (Hard!) Show that the quotient ring <math>{\mathbb Q}[x,y]/\langle x^2+y^2-1\rangle</math> is not a UFD. |
|||
Revision as of 09:51, 6 November 2014
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The information below is preliminary and cannot be trusted! (v)
This assignment is due at class time on Thursday, November 20, 2011.
Solve the following questions
Problem 1. (Klein's 1983 course)
- Show that the ideal [math]\displaystyle{ I=\langle 3,\, x^3-x^2+2x-1\rangle }[/math] inside the ring [math]\displaystyle{ {\mathbb Z}[x] }[/math] is not principal.
- Is [math]\displaystyle{ {\mathbb Z}[x]/I }[/math] a domain?
Problem 2. Prove that a ring [math]\displaystyle{ R }[/math] is a PID iff it is a UFD in which [math]\displaystyle{ \gcd(a,b)\in\langle a, b\rangle }[/math] for every non-zero [math]\displaystyle{ a,b\in R }[/math].
Problem 3. (Lang) Show that the ring [math]\displaystyle{ {\mathbb Z}[i]=\{a+ib\colon a,b\in{\mathbb Z}\}\subset{\mathbb C} }[/math] is a PID and hence a UFD. What are the units of that ring?
Problem 4. (Dummit and Foote) In [math]\displaystyle{ {\mathbb Z}[i] }[/math], find the greatest common divisor of [math]\displaystyle{ 85 }[/math] and [math]\displaystyle{ 1+13i }[/math], and express it as a linear combination of these two elements.
Problem 5. (Klein's 1983 course) Show that [math]\displaystyle{ {\mathbb Z}[\sqrt{10}] }[/math] is not a UFD.
Problem 6. (Hard!) Show that the quotient ring [math]\displaystyle{ {\mathbb Q}[x,y]/\langle x^2+y^2-1\rangle }[/math] is not a UFD.