14-240/Classnotes for Monday September 15: Difference between revisions
From Drorbn
Jump to navigationJump to search
(Fix some typesetting.) |
(fix typesetting, test latex) |
||
Line 1: | Line 1: | ||
Definition: |
Definition: |
||
Subtraction: if <math>a, b \in F, a - b = a + (-b)</math>. |
Subtraction: if <math>a, b \in F, a - b = a + (-b)</math>. |
||
Division: if <math>a, b \in F, a / b = a |
Division: if <math>a, b \in F, a / b = a \times b^{-1}</math>. |
||
Theorem: |
Theorem: |
||
8. |
8. <math>\forall a \in F</math>, <math>a \times 0 = 0</math>. |
||
proof of 8: By F3 , <math>a |
proof of 8: By F3 , <math>a \times 0 = a \times (0 + 0)</math>; |
||
By F5 , <math>a |
By F5 , <math>a \times (0 + 0) = a \times 0 + a \times 0</math>; |
||
By F3 , <math>a |
By F3 , <math>a \times 0 = 0 + a \times 0</math>; |
||
By Thm P1 |
By Thm P1,<math>0 = a \times 0</math>. |
||
9. |
9. <math>\nexists b \in F</math> s.t. <math>0 \times b = 1</math>; |
||
<math>\forall b \in F</math> s.t. <math>0 \times b \neq 1</math>. |
|||
proof of 9: By F3 , <math> |
proof of 9: By F3 , <math>\times b = 0 </math>is not equal to <math>1</math>. |
||
10. <math>(-a) |
10. <math>(-a) \times b = a \times (-b) = -(a \times b)</math>. |
||
11. <math>(-a) |
11. <math>(-a) \times (-b) = a \times b</math>. |
||
12. <math>a |
12. <math>a \times b = 0 \iff a = 0 or b = 0</math>. |
||
proof of 12: <= : By P8 , if <math>a = 0</math> , then <math>a |
proof of 12: <= : By P8 , if <math>a = 0</math> , then <math>a \times b = 0 \times b = 0</math>; |
||
By P8 , if <math>b = 0</math> , then <math>a |
By P8 , if <math>b = 0</math> , then <math>a \times b = a \times 0 = 0</math>. |
||
=> : Assume <math>a |
=> : Assume <math>a \times b = 0 </math> , if a = 0 we are done; |
||
Otherwise , by P8 , <math>a </math> is not equal to <math>0 </math>and we have <math>a |
Otherwise , by P8 , <math>a </math> is not equal to <math>0 </math>and we have <math>a \times b = 0 = a \times 0</math>; |
||
by cancellation (P2) , <math>b = 0</math>. |
by cancellation (P2) , <math>b = 0</math>. |
||
<math>(a + b) |
<math>(a + b) \times (a - b) = a^2 - b^2</math>. |
||
proof: By F5 , <math>(a + b) |
proof: By F5 , <math>(a + b) \times (a - b) = a \times (a + (-b)) + b \times (a + (-b)) |
||
= a |
= a \times a + a \times (-b) + b \times a + (-b) \times b |
||
= a^2 - b^2</math> |
= a^2 - b^2</math> |
||
Theorem : |
Theorem : |
||
<math>\exists! \iota : \Z \rightarrow F</math> s.t. |
|||
1. <math>\iota(0) = 0 , \iota(1) = 1</math>; |
1. <math>\iota(0) = 0 , \iota(1) = 1</math>; |
||
2. For every <math>m ,n |
2. For every <math>m ,n \in Z</math> , <math>\iota(m+n) = \iota(m) + \iota(n)</math>; |
||
3. For every <math>m ,n |
3. For every <math>m ,n \in </math> , <math>\iota(m\times n) = \iota(m) \times \iota(n)</math>. |
||
iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1; |
iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1; |
||
Line 43: | Line 43: | ||
= iota(26) + iota(1) |
= iota(26) + iota(1) |
||
= iota(26) + 1 |
= iota(26) + 1 |
||
= iota(13 |
= iota(13 \times 2) + 1 |
||
= iota(2) |
= iota(2) \times iota(13) + 1 |
||
= (1 + 1) |
= (1 + 1) \times iota(13) + 1 |
||
= 0 |
= 0 \times iota(13) + 1 |
||
= 1</math> |
= 1</math> |
Revision as of 12:31, 16 September 2014
Definition:
Subtraction: if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a, b \in F, a - b = a + (-b)}
.
Division: if .
Theorem:
8. , . proof of 8: By F3 , ; By F5 , ; By F3 , ; By Thm P1,. 9. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nexists b \in F} s.t. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \times b = 1} ; s.t. . proof of 9: By F3 , is not equal to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} . 10. . 11. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-a) \times (-b) = a \times b} . 12. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \times b = 0 \iff a = 0 or b = 0} . proof of 12: <= : By P8 , if , then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \times b = 0 \times b = 0} ; By P8 , if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b = 0} , then . => : Assume Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \times b = 0 } , if a = 0 we are done; Otherwise , by P8 , is not equal to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 } and we have ; by cancellation (P2) , .
.
proof: By F5 , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a + b) \times (a - b) = a \times (a + (-b)) + b \times (a + (-b)) = a \times a + a \times (-b) + b \times a + (-b) \times b = a^2 - b^2}
Theorem :
s.t. 1. ; 2. For every Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m ,n \in Z} , ; 3. For every , .
iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1;
iota(3) = iota(2+1) = iota(2) + iota(1) = iota(2) + 1;
......
In F2 ,