10-1100/Homework Assignment 3: Difference between revisions
No edit summary |
No edit summary |
||
| (One intermediate revision by the same user not shown) | |||
| Line 1: | Line 1: | ||
{{10-1100/Navigation}} |
{{10-1100/Navigation}} |
||
{{In Preparation}} |
|||
This assignment is due at class time on Tuesday, November 16, 2010. |
This assignment is due at class time on Tuesday, November 16, 2010. |
||
| Line 14: | Line 13: | ||
'''Problem 3.''' (Selick) Show that the group <math>Q</math> of unit quaternions (<math>\{\pm 1, \pm i, \pm j, \pm k\}</math>, subject to <math>i^2=j^2=k^2=-1\in Z(Q)</math> and <math>ij=k</math>) is not a semi-direct product of two of its proper subgroups. |
'''Problem 3.''' (Selick) Show that the group <math>Q</math> of unit quaternions (<math>\{\pm 1, \pm i, \pm j, \pm k\}</math>, subject to <math>i^2=j^2=k^2=-1\in Z(Q)</math> and <math>ij=k</math>) is not a semi-direct product of two of its proper subgroups. |
||
'''Problem 4.''' (Qualifying exam, September 2008) Let <math>G</math> be a group and <math>p</math> be a prime. Show that if <math>H</math> is a <math>p</math>-subgroup of <math>G</math>, then <math>(N_G(H):H)</math> is congruent to <math>(G:H)</math> mod <math>p</math>. You may wish to study the action of <math>H</math> on <math>G/H</math> by multiplication on the left. |
'''Problem 4.''' (Qualifying exam, September 2008) Let <math>G</math> be a finite group and <math>p</math> be a prime. Show that if <math>H</math> is a <math>p</math>-subgroup of <math>G</math>, then <math>(N_G(H):H)</math> is congruent to <math>(G:H)</math> mod <math>p</math>. You may wish to study the action of <math>H</math> on <math>G/H</math> by multiplication on the left. |
||
'''Problem 5.''' (easy) |
'''Problem 5.''' (easy) |
||
Latest revision as of 07:02, 15 November 2010
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This assignment is due at class time on Tuesday, November 16, 2010.
Solve the following questions
Problem 1. (Selick) Show that any group of order 56 has a normal Sylow-[math]\displaystyle{ p }[/math] subgroup, for some prime [math]\displaystyle{ p }[/math] dividing 56.
Problem 2. (Qualifying exam, May 1997) Let [math]\displaystyle{ S_5 }[/math] act on [math]\displaystyle{ ({\mathbb Z/5})^5 }[/math] by permuting the factors, and let [math]\displaystyle{ G }[/math] be the semi-direct product of [math]\displaystyle{ S_5 }[/math] and [math]\displaystyle{ ({\mathbb Z/5})^5 }[/math].
- What is the order of [math]\displaystyle{ G }[/math]?
- How many Sylow-5 subgroups does [math]\displaystyle{ G }[/math] have? Write down one of them.
Problem 3. (Selick) Show that the group [math]\displaystyle{ Q }[/math] of unit quaternions ([math]\displaystyle{ \{\pm 1, \pm i, \pm j, \pm k\} }[/math], subject to [math]\displaystyle{ i^2=j^2=k^2=-1\in Z(Q) }[/math] and [math]\displaystyle{ ij=k }[/math]) is not a semi-direct product of two of its proper subgroups.
Problem 4. (Qualifying exam, September 2008) Let [math]\displaystyle{ G }[/math] be a finite group and [math]\displaystyle{ p }[/math] be a prime. Show that if [math]\displaystyle{ H }[/math] is a [math]\displaystyle{ p }[/math]-subgroup of [math]\displaystyle{ G }[/math], then [math]\displaystyle{ (N_G(H):H) }[/math] is congruent to [math]\displaystyle{ (G:H) }[/math] mod [math]\displaystyle{ p }[/math]. You may wish to study the action of [math]\displaystyle{ H }[/math] on [math]\displaystyle{ G/H }[/math] by multiplication on the left.
Problem 5. (easy)
- Prove that in any ring, [math]\displaystyle{ (-1)^2=1 }[/math].
- Prove that even in a ring without a unit, [math]\displaystyle{ (-a)^2=a^2 }[/math].
(Feel free to do the second part first and then to substitute [math]\displaystyle{ a=1 }[/math]).
Problem 6.
- (Qualifying exam, April 2009) Prove that a finite integral domain is a field.
- (Qualifying exam, September 2008) Prove that in a finite commutative ring, every prime ideal is maximal.
Problem 7. (Dummit and Foote) A ring [math]\displaystyle{ R }[/math] is called a Boolean ring if [math]\displaystyle{ a^2=a }[/math] for all [math]\displaystyle{ a\in R }[/math].
- Prove that every Boolean ring is commutative.
- Prove that the only Boolean ring that is also an integral domain is [math]\displaystyle{ {\mathbb Z}/2 }[/math].