|
|
(One intermediate revision by the same user not shown) |
Line 8: |
Line 8: |
|
'''Definition.''' <math>v\in V</math>is a linear combination of elements in <math>S\subset V</math> if <math>\exists u_1,\ldots,u_n\in S</math> and <math>a_1,\dots,a_n \in F</math> such that <math>V=\sum a_i u_i</math> |
|
'''Definition.''' <math>v\in V</math>is a linear combination of elements in <math>S\subset V</math> if <math>\exists u_1,\ldots,u_n\in S</math> and <math>a_1,\dots,a_n \in F</math> such that <math>V=\sum a_i u_i</math> |
|
|
|
|
|
|
'''Example.''' In <math>P_3(\mathbb{R})</math>, <math>v_1=2x^3-2x^2+12-6</math> is a linear combination of: <math>u_1=x^3-2x^2-5x-3</math> and <math>u_2=3x^3-5x^2-4x-9</math> but <math>v_2=3x^3-2x^2+7x+8</math> is not. |
|
'''Example.''' <math>\mbox{In }P_3(\mathbb{R})\mbox{,}</math> |
|
|
<math>v_1^{}=2x^3-2x^2+12-6 \mbox{ is a linear combination of:}</math> |
|
⚫ |
<math> u_1^{}=x^3-2x^2-5x-3 \mbox{ and }u_2=3x^3-5x^2-4x-9</math> |
|
|
<math>\mbox{but } v_2^{}=3x^3-2x^2+7x+8 \mbox{ is not.}</math> |
|
|
|
|
|
|
<math>\mbox{Why?}{}_{}^{}</math> |
|
'''Why?''' <math>v_1=2x^3-2x^2+12-6=a_1u_1+a_2u_2</math> |
|
⚫ |
<math>= a_1(x^3-2x^2-5x-3 )+a_2(3x^3-5x^2-4x-9 )</math> |
|
|
|
|
<math>v_1^{}=2x^3-2x^2+12-6=a_1^{}u_1+a_2u_2</math> |
|
|
|
|
|
<math>=a_1(x^3-2x^2-5x-3)+a_2(3x^3-5x^2-4x-9){}_{}^{}</math> |
|
|
|
|
|
|
<math>v_1^{}=-4u_1+2u_2</math> |
|
<math>v_1^{}=-4u_1+2u_2</math> |
#
|
Week of...
|
Notes and Links
|
1
|
Sep 11
|
About, Tue, HW1, Putnam, Thu
|
2
|
Sep 18
|
Tue, HW2, Thu
|
3
|
Sep 25
|
Tue, HW3, Photo, Thu
|
4
|
Oct 2
|
Tue, HW4, Thu
|
5
|
Oct 9
|
Tue, HW5, Thu
|
6
|
Oct 16
|
Why?, Iso, Tue, Thu
|
7
|
Oct 23
|
Term Test, Thu (double)
|
8
|
Oct 30
|
Tue, HW6, Thu
|
9
|
Nov 6
|
Tue, HW7, Thu
|
10
|
Nov 13
|
Tue, HW8, Thu
|
11
|
Nov 20
|
Tue, HW9, Thu
|
12
|
Nov 27
|
Tue, HW10, Thu
|
13
|
Dec 4
|
On the final, Tue, Thu
|
F
|
Dec 11
|
Final: Dec 13 2-5PM at BN3, Exam Forum
|
Register of Good Deeds
|
Add your name / see who's in!
|
edit the panel
|
|
Links to Classnotes
Definition. is a linear combination of elements in if and such that
Example. In , is a linear combination of: and but is not.
Why?