06-240/Classnotes For Tuesday November 21: Difference between revisions
No edit summary |
m (Reverted edit of 161.53.232.46, changed back to last version by Gokmen) |
||
Line 7: | Line 7: | ||
{| align=center |
{| align=center |
||
|- |
|- |
||
|<math>A_1=\begin{pmatrix}1</math> |
|<math>A_1=\begin{pmatrix}1&3&2&4&2\\0&1&2&3&4\\0&0&0&1&2\\0&0&0&0&0 \end{pmatrix}</math> |
||
|width=10%| |
|||
|<math>A_2=\begin{pmatrix}1&0&-4&0&-6\\0&1&2&0&-2\\0&0&0&1&2\\0&0&0&0&0 \end{pmatrix}</math> |
|||
|} |
|||
So let us assume row reduction leads us to the systems <math>A_1x=b</math> or <math>A_2x=b</math>. What does it tell us about the solutions? Let us start from the second system: |
|||
{| align=center |
|||
|- align=center |
|||
|<math>\begin{pmatrix}1&0&-4&0&-6\\0&1&2&0&-2\\0&0&0&1&2\\0&0&0&0&0\end{pmatrix} \begin{pmatrix}x_1\\x_2\\x_3\\x_4\\x_5\end{pmatrix} = \begin{pmatrix}b_1\\b_2\\b_3\\b_4\end{pmatrix}</math> |
|||
|width=15%|or |
|||
| |
|||
{| |
|||
|- |
|||
|<math>x_1</math> |
|||
| |
|||
|<math>-4x_3</math> |
|||
| |
|||
|<math>-6x_5</math> |
|||
|<math>=</math> |
|||
|<math>b_1</math> |
|||
|- |
|||
| |
|||
|<math>x_2</math> |
|||
|<math>+2x_3</math> |
|||
| |
|||
|<math>-2x_5</math> |
|||
|<math>=</math> |
|||
|<math>b_2</math> |
|||
|- |
|||
| |
|||
| |
|||
| |
|||
|<math>x_4</math> |
|||
|<math>+2x_5</math> |
|||
|<math>=</math> |
|||
|<math>b_3</math> |
|||
|- |
|||
| |
|||
| |
|||
| |
|||
| |
|||
|align=center|<math>0</math> |
|||
|<math>=</math> |
|||
|<math>b_4</math> |
|||
|} |
|||
|} |
|||
Well, quite clearly if <math>b_4\neq 0</math> this system has no solutions, but if <math>b_4=0</math> it has solutions no matter what <math>b_1</math>, <math>b_2</math> and <math>b_3</math> are. Finally, for any given values of <math>b_1</math>, <math>b_2</math> and <math>b_3</math> we can choose the values of <math>x_3</math> and <math>x_5</math> (the variables corresponding the columns containing no pivots) as we please, and then get solutions by setting the "pivotal variables" in terms of the non-pivotal ones as follows: <math>x_1=b_1+4x_3+6x_5</math>, <math>x_2=b_2-2x_3+2x_5</math> and <math>x_4=b_3-2x_5</math>. |
|||
What about the system corresponding to <math>A_1</math>? It is |
|||
{| align=center |
|||
|- align=center |
|||
|<math>\begin{pmatrix}1&3&2&4&2\\0&1&2&3&4\\0&0&0&1&2\\0&0&0&0&0\end{pmatrix} \begin{pmatrix}x_1\\x_2\\x_3\\x_4\\x_5\end{pmatrix} = \begin{pmatrix}b_1\\b_2\\b_3\\b_4\end{pmatrix}</math> |
|||
|width=15%|or |
|||
| |
|||
{| |
|||
|- align=center |
|||
|<math>x_1</math> |
|||
|<math>+3x_2</math> |
|||
|<math>+2x_3</math> |
|||
|<math>+4x_4</math> |
|||
|<math>+2x_5</math> |
|||
|<math>=</math> |
|||
|<math>b_1</math> |
|||
|- align=center |
|||
| |
|||
|<math>x_2</math> |
|||
|<math>+2x_3</math> |
|||
|<math>+3x_4</math> |
|||
|<math>+4x_5</math> |
|||
|<math>=</math> |
|||
|<math>b_2</math> |
|||
|- align=center |
|||
| |
|||
| |
|||
| |
|||
|<math>x_4</math> |
|||
|<math>+2x_5</math> |
|||
|<math>=</math> |
|||
|<math>b_3</math> |
|||
|- |
|||
| |
|||
| |
|||
| |
|||
| |
|||
|align=center|<math>0</math> |
|||
|<math>=</math> |
|||
|<math>b_4</math> |
|||
|} |
|||
|} |
|||
Here too we have solutions iff <math>b_4=0</math>, and if <math>b_4=0</math>, we have the freedom to choose the non-pivotal variables <math>x_3</math> and <math>x_5</math> as we please. But now the formulas for fixing the pivotal variables <math>x_1</math>, <math>x_2</math> and <math>x_4</math> in terms of the non-pivotal ones are a bit harder. |
|||
==Class notes== |
|||
[[Media:MAT Lect018.pdf|Scan of Week 11 Lecture 1 notes]] |
|||
[[Media:06-240-lec notes nov21st.pdf|Lecture_notes november21st]] |
Latest revision as of 09:47, 28 May 2007
|
More about the Wongpak Matrices
In Talk:06-240/Classnotes_For_Tuesday_November_14, User:Wongpak asked something about row echelon form and reduced row echelon form, and gave the following matrices as specific examples:
So let us assume row reduction leads us to the systems or . What does it tell us about the solutions? Let us start from the second system:
or |
|
Well, quite clearly if this system has no solutions, but if it has solutions no matter what , and are. Finally, for any given values of , and we can choose the values of and (the variables corresponding the columns containing no pivots) as we please, and then get solutions by setting the "pivotal variables" in terms of the non-pivotal ones as follows: , and .
What about the system corresponding to ? It is
or |
|
Here too we have solutions iff , and if , we have the freedom to choose the non-pivotal variables and as we please. But now the formulas for fixing the pivotal variables , and in terms of the non-pivotal ones are a bit harder.