06-240/Classnotes For Tuesday October 3: Difference between revisions

From Drorbn
Jump to navigationJump to search
(Added scan of Week 4 Lecture 1 notes)
No edit summary
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{06-240/Navigation}}

===Links to Classnotes===
===Links to Classnotes===
* PDF file by [[User:Alla]]: [[Media:MAT_Lect007.pdf|Week 4 Lecture 1 notes]]
* PDF file by [[User:Alla]]: [[Media:MAT_Lect007.pdf|Week 4 Lecture 1 notes]]
* PDF file by [[User:Gokmen]]: [[Media:06-240-Lecture-03-October.pdf|Week 4 Lecture 1 notes]]

----
----
'''Definition.''' <math>v\in V</math>is a linear combination of elements in <math>S\subset V</math> if <math>\exists u_1,\ldots,u_n\in S</math> and <math>a_1,\dots,a_n \in F</math> such that <math>V=\sum a_i u_i</math>
<math>\mbox{Definition}{}_{}^{}</math>


<math>v\in V \mbox{ is a linear combination of elements in } S\subset V</math>
'''Example.''' In <math>P_3(\mathbb{R})</math>, <math>v_1=2x^3-2x^2+12-6</math> is a linear combination of: <math>u_1=x^3-2x^2-5x-3</math> and <math>u_2=3x^3-5x^2-4x-9</math> but <math>v_2=3x^3-2x^2+7x+8</math> is not.
<math> \mbox{ if }\exists u_1,\ldots,u_n\in S \mbox{ and } a_1,\dots,a_n \in F \mbox{ such that } V=\sum a_i u_i</math>


<math>\mbox{Example}{}_{}^{}</math>
'''Why?''' <math>v_1=2x^3-2x^2+12-6=a_1u_1+a_2u_2</math>
<math>=a_1(x^3-2x^2-5x-3)+a_2(3x^3-5x^2-4x-9)</math>


<math>\mbox{In }P_3(\mathbb{R})\mbox{,}</math>
<math>v_1^{}=2x^3-2x^2+12-6 \mbox{ is a linear combination of:}</math>
<math>u_1^{}=x^3-2x^2-5x-3\mbox{ and }u_2=3x^3-5x^2-4x-9</math>
<math>\mbox{but } v_2^{}=3x^3-2x^2+7x+8 \mbox{ is not.}</math>

<math>\mbox{Why?}{}_{}^{}</math>

<math>v_1^{}=2x^3-2x^2+12-6=a_1^{}u_1+a_2u_2=a_1(x^3-2x^2-5x-3)+a_2(3x^3-5x^2-4x-9)</math>
<math>v_1^{}=-4u_1+2u_2</math>
<math>v_1^{}=-4u_1+2u_2</math>


<math>\mbox{Definition}{}_{}^{}</math>
<math>\mbox{Definition}{}_{}^{}</math>


<math>\mbox{We say that a subset }S\subset V\mbox{ generates or spans }V \mbox{ if span }S=\lbrace\mbox{ all linear combinations of elements in } S\rbrace=V</math>
<math>\mbox{We say that a subset }S\subset V\mbox{ generates or spans }V </math>

<math>\mbox{ if span }S=\lbrace\mbox{ all linear combinations of elements in } S\rbrace=V{}_{}^{}</math>


<math>\mbox{Examples}{}_{}^{}</math>
<math>\mbox{Examples}{}_{}^{}</math>

Latest revision as of 07:14, 12 July 2007

Links to Classnotes


Definition. is a linear combination of elements in if and such that

Example. In , is a linear combination of: and but is not.

Why?