|
|
(7 intermediate revisions by 5 users not shown) |
Line 1: |
Line 1: |
|
|
{{06-240/Navigation}} |
|
|
|
|
|
===Scan of Lecture notes=== |
|
|
|
|
|
*Image file: week 3 lecture |
|
|
** note1[[http://i98.photobucket.com/albums/l269/uhoang/1.jpg]] |
|
|
** note2:[[http://i98.photobucket.com/albums/l269/uhoang/2.jpg]] |
|
|
|
|
|
* PDF file by [[User:Alla]]: [[Media:MAT_Lect006.pdf|Week 3 Lecture 2 notes]] |
|
|
* PDF file by [[User:Gokmen]]: [[Media:06-240-Lecture-28-september.pdf|Week 3 Lecture 2 notes]] |
|
|
|
|
|
===Scan of Tutorial notes=== |
|
|
|
|
|
* PDF file by [[User:Alla]]: [[Media:MAT_Tut003.pdf|Week 3 Tutorial notes]] |
|
|
* PDF file by [[User:Gokmen]]: [[Media:06-240-tutorial-28-september.pdf|Week 3 Tutorial notes]] |
|
|
|
|
===Linear Combination=== |
|
===Linear Combination=== |
|
Definition: Let (''u''<sub>i</sub>) = (''u''<sub>1</sub>, ''u''<sub>2</sub>, ..., ''u''<sub>n</sub>) be a sequence of vectors in V. A sum of the form<br> |
|
|
::''a''<sub>i</sub> <math> \in </math> F, <math>\sum_{i=1}^n</math> ''a''<sub>i</sub>''u''<sub>i</sub> = ''a''<sub>1</sub>''u''<sub>1</sub> + ''a''<sub>2</sub>''u''<sub>2</sub>+ ... +''a''<sub>n</sub>''u''<sub>n</sub> |
|
|
|
|
|
|
|
<math>\mbox{Definition: Let }(u_i) = (u_1,u_2,\ldots,u_n)\mbox{ be a sequence of vectors in }V</math>. |
⚫ |
is called a "Linear Combination " of the ''u''<sub>i</ sub>. |
|
|
|
|
|
|
<math>\mbox{A sum of the form:}{}_{}^{}</math> |
|
|
|
|
|
<math> a_i\in F,\sum_{i=1}^n a_i u_i = a_1u_1 + a_2u_2+\ldots+a_nu_n</math> |
|
|
|
|
⚫ |
<math>\mbox{is called a Linear Combination of the }u_i^{ }</ math>. |
|
|
|
|
|
===Span=== |
|
===Span=== |
|
span(''u''<sub>i</sub>):= The set of all possible linear combinations of the ''u''<sub>i</sub>'s. |
|
<math>\mbox{span}(u_i^{ }):= \lbrace\mbox{ The set of all possible linear combinations of the } u_i^{ }\rbrace</math> |
|
|
|
|
|
⚫ |
<math> \mbox{If }\mathcal{S} \ subset V \ \mbox{ is any subset, }</math> |
|
|
|
|
|
|
<math>\mbox{span}(\mathcal{S}):= \lbrace\mbox{The set of all linear combination of vectors in }\mathcal{S}\rbrace=\left\lbrace\sum_{i=0}^n a_i u_i,\quad a_i \in F, u_i \in \mathcal{S}\right\rbrace</math> |
⚫ |
If <math>\mathcal{S} \ subseteq</math> V is any subset, |
|
|
: |
|
|
{| border="0" cellpadding="0" cellspacing="0" |
|
|
|- |
|
|
|span <math>\mathcal{S}</math> |
|
⚫ |
|:= The set of all linear combination of vectors in <math>\mathcal{ S}</math> |
|
|
|- |
|
|
| |
|
⚫ |
|=<math> \left \{ \sum_{i= 0}^n a_i u_i , a_i \in \mbox{ F} , u_i \in \mathcal{S} \right \} \ni 0</math> |
|
|
|} |
|
|
|
|
|
|
even if <math>\mathcal{S}</math> is empty. |
|
<math>\mbox{span}(\mathcal{S})\mbox{ always contains }0\mbox{ even if }\mathcal{S}=\emptyset</math> |
|
|
|
|
|
|
'''Theorem''' |
⚫ |
'''Theorem''': For any <math>\mathcal{S} \ subseteq</math> V, span <math>\mathcal{S} </math> is a subspace of V . |
|
|
|
|
|
⚫ |
<math> \forall\mathcal{S} \ subset V \mbox{, span }(\mathcal{S} )\mbox{ is a subspace of }V </math> |
|
|
|
|
|
Proof:<br> |
|
<math>\mbox{Proof:}{}_{}^{}</math> |
|
|
|
|
1. 0 <math> \in </math> span <math>\mathcal{S}</math>.<br> |
|
|
2. Let ''x'' <math> \in </math> span <math>\mathcal{S}</math>, Let ''x'' <math> \in </math> span <math>\mathcal{S}</math>,
|
|
1. <math>0 \in\mbox{ span}(\mathcal{S})</math>.<br> |
|
<math>\Rightarrow</math> ''x'' = <math>\sum_{i=1}^n</math> ''a''<sub>i</sub>''u''<sub>i</sub>, ''u''<sub>i</sub> <math> \in \mathcal{S}</math>, ''y'' = <math>\sum_{i=1}^m</math> ''b''<sub>i</sub>''v''<sub>i</sub>, ''v''<sub>i</sub> <math> \in \mathcal{S}</math>. |
|
2. <math>\mbox{Let }x \in \mbox{ span}(\mathcal{S})\Rightarrow x =\sum_{i=1}^n a_iu_i\mbox{, }u_i\in \mathcal{S}\mbox{, }</math> |
|
|
|
|
<math>\Rightarrow</math> ''x''+''y'' = <math>\sum_{i=1}^n</math> ''a''<sub>i</sub>''u''<sub>i</sub> + <math>\sum_{i=1}^m</math> ''b''<sub>i</sub>''v''<sub>i</sub> = <math>\sum_{i=1}^{m+n}</math> ''c''<sub>i</sub>''w''<sub>i</sub> where ''c''<sub>i</sub>=(''a''<sub>1</sub>, ''a''<sub>2</sub>,...,''a''<sub>n</sub>, ''b''<sub>1</sub>, ''b''<sub>2</sub>,...,''b''<sub>m</sub>) and ''w''<sub>i</sub>=''c''<sub>i</sub>=(''u''<sub>1</sub>, ''u''<sub>2</sub>,...,''u''<sub>n</sub>, ''v''<sub>1</sub>, ''v''<sub>2</sub>,...,''v''<sub>m</sub>).<br> |
|
|
3. ''cx''= c<math>\sum_{i=1}^n</math> ''a''<sub>i</sub>''u''<sub>i</sub>=<math>\sum_{i=1}^n</math> (''ca''<sub>i</sub>)''u''<sub>i</sub><math>\in </math> span <math>\mathcal{S}</math>.
|
|
<math>\mbox{and let }y \in \mbox{ span}(\mathcal{S})\Rightarrow y =\sum_{i=1}^m b_iv_i\mbox{, }v_i\in \mathcal{S}</math> |
|
|
|
|
|
<math>x+y = \sum_{i=1}^n a_iu_i+ \sum_{i=1}^m b_iv_i = \sum_{i=1}^{\mbox{max}(m,n)} c_iw_i</math> |
|
|
|
|
|
<math>\qquad\mbox{ where }c_i=(a_1+b_1,a_2+b_2,\ldots,a_{\mbox{max}(m,n)}+b_{\mbox{max}(m,n)})\mbox{ and }w_i\in\mathcal{S}</math> |
|
|
|
|
⚫ |
3.<math> cx= c\ sum_{ i=1}^n a_iu_i=\sum_{i= 1}^n (ca_i)u_i\in\mbox{ span} (\mathcal{S} )</math> |
|
|
|
|
|
|
|
|
|
''Example'' |
|
''Example'' |
|
|
1. |
|
1. Let P<sub>3</sub>(<math>\Re</math>)={ax<sup>3</sup>+bx<sup>2</sup>+cx+d}<math>\subseteq</math>P(<math>\Re</math>), ''a'', ''b'', ''c'', ''d'', <math>\in \Re</math>. |
|
|
|
|
|
''u''<sub>1</sub>=''x''<sup>3</sup>-2''x''<sup>2</sup>-5''x''-3 |
|
|
|
<math>\mbox{Let } P_3(\mathbb{R})=\lbrace ax^3+bx^2+cx+d\rbrace\subset P(\mathbb{R})\mbox{, where }a, b, c, d \in \mathbb{R}</math>. |
|
''u''<sub>2</sub>=3''x''<sup>3</sup>-5''x''<sup>2</sup>-4''x''-9 |
|
|
|
|
|
''v''=2''x''<sup>3</sup>-2''x''<sup>2</sup>+12''x''-6 |
|
|
|
<math>\begin{matrix}u_1^{}&=&x^3-2x^2-5x-3\\ |
|
|
u_2^{}&=&3x^3-5x^2-4x-9\\ |
|
|
v_{}^{}&=&2x^3-2x^2+12x-6\end{matrix}</math> |
|
|
|
|
|
<math>\mbox{Let }W=\mbox{span}(u_1^{},u_2^{})\mbox{,}</math><br> |
|
|
|
|
|
<br><math>\mbox{Does/Is } v \in W\mbox{ ?}</math> |
|
|
|
|
⚫ |
<math>v\in W\mbox{ if it is a linear combination of span}(u_1^{},u_2^{} )</math> |
|
|
|
|
|
<math>v=a_1u_1 + a_2u_2 \mbox{ for some }a_1, a_2 \in \mathbb{R}</math><br> |
|
|
|
|
|
<br><math>\mbox{If }\exists a_1,a_2\in \mathbb{R}</math> |
|
|
|
|
|
<math>\begin{matrix}2x^3-2x^2+12x-6&=& a_1^{}(x^3-2x^2-5x-3) + a_2^{}(3x^3-5x^2-4x-9)\\ |
|
|
\ &=&(a_1^{}+3a_2^{})x^3 + (-2a_1^{}-5a_2^{})x^2 + (-5a_1^{}-4a_2^{})x + (-3a_1^{}-9a_2^{})\end{matrix}</math> |
|
|
|
|
|
<math>\mbox{Need to solve}\begin{cases} |
|
|
2=a_1^{}+3a_2^{}\\ |
|
|
-2=-2a_1^{}-5a_2^{}\\ |
|
|
12=-5a_1^{}-4a_2^{}\\ |
|
|
-6=-3a_1^{}-9a_2^{}\end{cases}</math> |
|
|
|
|
|
<math>\mbox{Solve the four equations above and we will get }a_1^{}=-4\mbox{ and }a_2^{}=2</math> |
|
|
|
|
|
<math>\mbox{Check if }a_1^{}=-4\mbox{ and }a_2^{}=2\mbox{ holds for all 4 equations.}</math> |
|
|
|
|
|
<math>\mbox{Since it holds, } v\in W</math> |
#
|
Week of...
|
Notes and Links
|
1
|
Sep 11
|
About, Tue, HW1, Putnam, Thu
|
2
|
Sep 18
|
Tue, HW2, Thu
|
3
|
Sep 25
|
Tue, HW3, Photo, Thu
|
4
|
Oct 2
|
Tue, HW4, Thu
|
5
|
Oct 9
|
Tue, HW5, Thu
|
6
|
Oct 16
|
Why?, Iso, Tue, Thu
|
7
|
Oct 23
|
Term Test, Thu (double)
|
8
|
Oct 30
|
Tue, HW6, Thu
|
9
|
Nov 6
|
Tue, HW7, Thu
|
10
|
Nov 13
|
Tue, HW8, Thu
|
11
|
Nov 20
|
Tue, HW9, Thu
|
12
|
Nov 27
|
Tue, HW10, Thu
|
13
|
Dec 4
|
On the final, Tue, Thu
|
F
|
Dec 11
|
Final: Dec 13 2-5PM at BN3, Exam Forum
|
Register of Good Deeds
|
Add your name / see who's in!
|
edit the panel
|
|
Scan of Lecture notes
- Image file: week 3 lecture
Scan of Tutorial notes
Linear Combination
.
.
Span
Theorem
1. .
2.
3.
Example
1.
.