AKT-09/Navigation: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 51: Line 51:
|align=center|12
|align=center|12
|Nov 23
|Nov 23
|{{AKT-09/vp|1124}}
|{{AKT-09/vp|1124}}<br/>{{AKT-09/vp|1126-1}}<br/>{{AKT-09/vp|1126-2}}
|- align=left
|- align=left
|align=center|13
|align=center|13
|Nov 30
|Nov 30
|{{AKT-09/vp|1201}}<br/>{{AKT-09/vp|1203-1}}<br/>{{AKT-09/vp|1203-2}}
|&nbsp;
|- align=left
|- align=left
|align=center|F
|align=center|F
|Dec 7
|Dec 7
|Final on Thu Dec 10, 9-11, Bahen 6183.
|{{BBS Link2|AKT09-091203-103647.jpg|The Final Exam}} on Thu Dec 10, 9-11, Bahen 6183.
|- align=left
|- align=left
|colspan=3 align=center|[[AKT-09/Register of Good Deeds|Register of Good Deeds]] / [[AKT-09/To Do|To Do List]]
|colspan=3 align=center|[[AKT-09/Register of Good Deeds|Register of Good Deeds]] / [[AKT-09/To Do|To Do List]]

Latest revision as of 11:39, 3 December 2009

# Week of... Videos, Notes, and Links
1 Sep 7 About This Class
dbnvp 090910-1: 3-colourings, Reidemeister's theorem, invariance, the Kauffman bracket.
dbnvp 090910-2: R23 invariance of the bracket, R1, the writhe, the Jones polynomial, programming the Jones polynomial.
Tricolourability
2 Sep 14 dbnvp 090915: More on Jones, some pathologies and more on Reidemeister, our overall agenda.
dbnvp 090917-1: The definition of finite type, weight systems, Jones is a finite type series.
dbnvp 090917-2: The skein relation for Jones; HOMFLY-PT and Conway; the weight system of Jones.
3 Sep 21 dbnvp 090922: FI, 4T, HOMFLY and FI and 4T, statement of the Fundamental Theorem, framed knots.
dbnvp 090924-1: Some dimensions of , is a commutative algebra, .
Class Photo
dbnvp 090924-2: is a co-commutative algebra, the relation with products of invariants, is a bi-algebra.
4 Sep 28 Homework Assignment 1
Homework Assignment 1 Solutions
dbnvp 090929: The Milnor-Moore theorem, primitives, the map .
dbnvp 091001-1: Jacobi diagrams, AS, IHX, STU, and the equivalence of all that with 4T.
dbnvp 091001-2: The very basics on Lie algebras.
5 Oct 5 dbnvp 091006: Lie algebraic weight systems, .
dbnvp 091008-1: More on , Lie algebras and the four colour theorem.
dbnvp 091008-2: The "abstract tenssor" approach to weight systems, and PBW, the map .
6 Oct 12 dbnvp 091013: Algebraic properties of vs. algebraic properties of .
Thursday's class canceled.
7 Oct 19 dbnvp 091020: Universal finite type invariants, filtered and graded spaces, expansions.
Homework Assignment 2
The Stonehenge Story
dbnvp 091022-1: The Stonehenge Story to IHX and STU.
dbnvp 091022-2: The Stonhenge Story: anomalies, framings, relation with physics.
8 Oct 26 dbnvp 091027: Knotted trivalent graphs and their chord diagrams.
dbnvp 091029-1: Zsuzsi Dancso on the Kontsevich Integral (1).
dbnvp 091029-2: Zsuzsi Dancso on the Kontsevich Integral (2).
9 Nov 2 dbnvp 091103: The details of .
dbnvp 091105-1: Three basic problems: genus, unknotting numbers, ribbon knots.
dbnvp 091105-2: The three basic problems and algebraic knot theory.
10 Nov 9 dbnvp 091110: Tangles and planar algebras, shielding and the generators of KTG.
Homework Assignment 3
No Thursday class.
11 Nov 16 Local Khovanov Homology
dbnvp 091119-1: Local Khovanov homology, I.
dbnvp 091119-2: Local Khovanov homology, II.
12 Nov 23 dbnvp 091124: Emulation of one structure inside another, deriving the pentagon.
dbnvp 091126-1: Peter Lee on braided monoidal categories, I.
dbnvp 091126-2: Peter Lee on braided monoidal categories, II.
13 Nov 30 dbnvp 091201: The relations in KTG.
dbnvp 091203-1: The Existence of the Exponential Function.
dbnvp 091203-2: The Final Exam, Dror's failures.
F Dec 7 The Final Exam on Thu Dec 10, 9-11, Bahen 6183.
Register of Good Deeds / To Do List
AKT-09-ClassPhoto.jpg
Add your name / see who's in!
3x4bbs.jpg