09-240/Classnotes for Tuesday October 20: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
Line 105: Line 105:
: Given any w∈W let u=S(W)
: Given any w∈W let u=S(W)
: As β is a basis find a<sub>i</sub>s in F s.t. v=∑a<sub>i</sub>u<sub>i</sub>
: As β is a basis find a<sub>i</sub>s in F s.t. v=∑a<sub>i</sub>u<sub>i</sub>
Apply T to both sides: T(S(W))=T(u)=T(∑a<sub>i</sub>u<sub>i</sub>)=∑a<sub>i</sub>T(u<sub>i</sub>)=∑a<sub>i</sub>W<sub>i</sub> ∴ I win!!! (QED)
Apply T to both sides: T(S(W))=T(u)=T(∑a<sub>i</sub>u<sub>i</sub>)=∑a<sub>i</sub>T(u<sub>i</sub>)=∑a<sub>i</sub>W<sub>i</sub>
::: ∴ I win!!! (QED)


: T T
: V → W ⇔ V' → W'
: rank T=rank T'
Fix t:V→Wa l.t.<math>Insert formula here</math>

== Definition ==
: 1. N(T=ker(T)={u∈V:Tu=0<sub>w</sub>}
: 2. R(T)=<sub>i</sub>m(T)={T(u):u∈V}

== Prop/Def ==
: 1. N(T)'⊂V is a subspace of V-------nullity(T):=dim N(T)
: 2. R(T)⊂W is a subspace of W--------rank(T):=dim R(T)


== Proof 1 ==
: x,y ∈N(T)⇒T(x)=0, T(y)=0
: T(x+y)=T9x)+T(y)=0+0=0
: x+y∈N(T)
::: ∴ I win!!! (QED)


== Proof 2 ==
: Let y∈R(T)⇒fix x s.t y=T(x),
: --------7y=7T(x)=T(7x)
: ----------⇒7y∈R(T)
::: ∴ I win!!! (QED)


== Examples ==
1.
: 0:V→W---------N(0)=V
: R(0)={0<sub>W</sub>}-----------nullity(0)=dim V
: --------------rank(0)=0
:: dim V+0=dimV
2.
:I<sub>V</sub>:V→V
:N(I)={0}
:nullity=0
:R(I)=dim V
:2'If T:V→W is an imorphism
:N(T)={0}
:nullity =0
:R(T)=W
:rank=dim W
::0+dim V=dim V
3.
:D:P<sub>7</sub>(R)→P<sub>7</sub>(R)
:Df=f'
::N(D)={C⊃C°: C∈R}=P<sub>0</sub>(R)
:R(D)⊂P<sub>6</sub>(R)
::nullity(D)=1
::basis:(1x°)
::rank(D)=7
:::7+1=8
4.
:3':D<sup>2</sup>:P<sub>7</sub>(R)
:D<sup>2</sup>f=f''
:W(D<sup>2</sup>)={ax+b: a,b∈R}=P<sub>1</sub>(R)
::nullity(D<sup>2</sup>)=2
::R(D<sup>2</sup>)=P<sub>5</sub>(R)
:::rank (D<sup>2</sup>)=6
::6+2=8

== Theorem ==
(rank-nullity Theorem, a.k.a. dimension Theorem)
:nullity(T)+rank(T)=dim V
:(for a l.t. T:V→W) when V is F.d.

== Proof ==
(To be continued next day)

Revision as of 19:41, 20 October 2009

Definition

V & W are "isomorphic" if there exists a linear transformation T:V → W & S:W → V such that T∘S=IW and S∘T=IV


Theorem

If V& W are field dimensions over F, then V is isomorphic to W iff dim V=dim W


Corollary

If dim V = n then

Note: represents isomorphism

Two "mathematical structures" are "isomorphic" if there's a "bijection" between their elements which preserves all relevant relations between such elements.

Example: Plastic chess is "isomorphic" to ivory chess, but it is not isomorphic to checkers.

Ex: The game of 15. Players alternate drawing one card each. Goal: To have exactly three of your cards add to 15.

O: 7, 4, 6, 5 → Wins! X: 3, 8, 1, 2

This game is isomorphic to Tic Tac Toe!

4 9 2
3 5 7
8 1 6

Converts to:

O 9 X
X O O
X X O
S∘T=IV
T∘S=IW
T(OV)=OW
T(x+y)=T(x)+T(y)
T(cV)=cT(V)
Likewise for
z=x+y ⇒ T(z)=T(x)+T(y)
u=7v ⇒ T(u)=7T(v)

Proof of Theorem Assume dim V= dim W=n

∃ basis β= (U1...Un) of V
α=(W1...Wn) of W
by an earlier theorem, ∃ a l.t. T:V→W such that T(Ui)=Wi

(T(∑aiui)=∑aiT(ui)=∑aiui)

∃ a l.t. S:W→V s.t. S(Wi)=Ui


Claim

S∘T=Iv
T∘S=Iw


Proof

If u∈ unto U=∑aiui

(S∘T)(u)=S(T(u))=S(T(∑aiui))
=S(∑aiwi)=∑aiui=u
⇒S∘T=Iv...
⇒Assume T&S as above exist
Choose a basis β= (U1...Un) of V

Claim

α=(W1=Tu1, W2=Tu2, ..., Wn=Tun)

is a basis of W, so dim W=n

Proof

α is lin. indep.

T(0)=0=∑aiwi=∑aiTui=T(∑aiui)
Apply S to both sides:
0=∑aiui
So ∃iai=0 as β is a basis

α Spans W

Given any w∈W let u=S(W)
As β is a basis find ais in F s.t. v=∑aiui

Apply T to both sides: T(S(W))=T(u)=T(∑aiui)=∑aiT(ui)=∑aiWi

∴ I win!!! (QED)


T T
V → W ⇔ V' → W'
rank T=rank T'

Fix t:V→Wa l.t.

Definition

1. N(T=ker(T)={u∈V:Tu=0w}
2. R(T)=im(T)={T(u):u∈V}

Prop/Def

1. N(T)'⊂V is a subspace of V-------nullity(T):=dim N(T)
2. R(T)⊂W is a subspace of W--------rank(T):=dim R(T)


Proof 1

x,y ∈N(T)⇒T(x)=0, T(y)=0
T(x+y)=T9x)+T(y)=0+0=0
x+y∈N(T)
∴ I win!!! (QED)


Proof 2

Let y∈R(T)⇒fix x s.t y=T(x),
--------7y=7T(x)=T(7x)
----------⇒7y∈R(T)
∴ I win!!! (QED)


Examples

1.

0:V→W---------N(0)=V
R(0)={0W}-----------nullity(0)=dim V
--------------rank(0)=0
dim V+0=dimV

2.

IV:V→V
N(I)={0}
nullity=0
R(I)=dim V
2'If T:V→W is an imorphism
N(T)={0}
nullity =0
R(T)=W
rank=dim W
0+dim V=dim V

3.

D:P7(R)→P7(R)
Df=f'
N(D)={C⊃C°: C∈R}=P0(R)
R(D)⊂P6(R)
nullity(D)=1
basis:(1x°)
rank(D)=7
7+1=8

4.

3':D2:P7(R)
D2f=f
W(D2)={ax+b: a,b∈R}=P1(R)
nullity(D2)=2
R(D2)=P5(R)
rank (D2)=6
6+2=8

Theorem

(rank-nullity Theorem, a.k.a. dimension Theorem)

nullity(T)+rank(T)=dim V
(for a l.t. T:V→W) when V is F.d.

Proof

(To be continued next day)