09-240/Classnotes for Tuesday October 20: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
== |
== Definition == |
||
V & W are "isomorphic" if there exists a linear transformation T:V → W & S:W → V such that T∘S=I<sub>W</sub> and S∘T=I<sub>V</sub> |
V & W are "isomorphic" if there exists a linear transformation T:V → W & S:W → V such that T∘S=I<sub>W</sub> and S∘T=I<sub>V</sub> |
||
Line 56: | Line 56: | ||
| O |
| O |
||
|} |
|} |
||
: S∘T=I<sub>V</sub> |
|||
: T∘S=I<sub>W</sub> |
|||
: T(O<sub>V</sub>)=O<sub>W</sub> |
|||
: T(x+y)=T(x)+T(y) |
|||
: T(cV)=cT(V) |
|||
: Likewise for <math> \mathrm{S} </math> |
|||
: z=x+y ⇒ T(z)=T(x)+T(y) |
|||
: u=7v ⇒ T(u)=7T(v) |
|||
Proof of Theorem <math> \Leftrightarrow </math> Assume dim V= dim W=n |
|||
: ∃ basis β= (U<sub>1</sub>...U<sub>n</sub>) of V |
|||
: α=(W<sub>1</sub>...W<sub>n</sub>) of W |
|||
: by an earlier theorem, ∃ a l.t. T:V→W such that T(U<sub>i</sub>)=W<sub>i</sub> |
|||
(T(∑a<sub>i</sub>u<sub>i</sub>)=∑a<sub>i</sub>T(u<sub>i</sub>)=∑a<sub>i</sub>u<sub>i</sub>) |
|||
∃ a l.t. S:W→V s.t. S(W<sub>i</sub>)=U<sub>i</sub> |
|||
== Claim == |
|||
: S∘T=I<sub>v</sub> |
|||
: T∘S=I<sub>w</sub> |
|||
== Proof == |
|||
If u∈<math> \mathrm{V} </math> unto U=∑a<sub>i</sub>u<sub>i</sub> |
|||
: (S∘T)(u)=S(T(u))=S(T(∑a<sub>i</sub>u<sub>i</sub>)) |
|||
: =S(∑a<sub>i</sub>w<sub>i</sub>)=∑a<sub>i</sub>u<sub>i</sub>=u |
|||
: ⇒S∘T=I<sub>v</sub>... |
|||
: ⇒Assume T&S as above exist |
|||
: Choose a basis β= (U<sub>1</sub>...U<sub>n</sub>) of V |
|||
== Claim == |
|||
α=(W<sub>1</sub>=Tu<sub>1</sub>, W<sub>2</sub>=Tu<sub>2</sub>, ..., W<sub>n</sub>=Tu<sub>n</sub>) |
|||
: is a basis of W, so dim W=n |
|||
== Proof == |
|||
α is lin. indep. |
|||
: T(0)=0=∑a<sub>i</sub>w<sub>i</sub>=∑a<sub>i</sub>Tu<sub>i</sub>=T(∑a<sub>i</sub>u<sub>i</sub>) |
|||
: Apply S to both sides: |
|||
: 0=∑a<sub>i</sub>u<sub>i</sub> |
|||
: So ∃<sub>i</sub>a<sub>i</sub>=0 as β is a basis |
|||
α Spans W |
|||
: Given any w∈W let u=S(W) |
|||
: As β is a basis find a<sub>i</sub>s in F s.t. v=∑a<sub>i</sub>u<sub>i</sub> |
|||
Apply T to both sides: T(S(W))=T(u)=T(∑a<sub>i</sub>u<sub>i</sub>)=∑a<sub>i</sub>T(u<sub>i</sub>)=∑a<sub>i</sub>W<sub>i</sub> ∴ I win!!! (QED) |
Revision as of 18:13, 20 October 2009
Definition
V & W are "isomorphic" if there exists a linear transformation T:V → W & S:W → V such that T∘S=IW and S∘T=IV
Theorem
If V& W are field dimensions over F, then V is isomorphic to W iff dim V=dim W
Corollary
If dim V = n then
- Note: represents isomorphism
Two "mathematical structures" are "isomorphic" if there's a "bijection" between their elements which preserves all relevant relations between such elements.
Example: Plastic chess is "isomorphic" to ivory chess, but it is not isomorphic to checkers.
Ex: The game of 15. Players alternate drawing one card each. Goal: To have exactly three of your cards add to 15.
O: 7, 4, 6, 5 → Wins! X: 3, 8, 1, 2
This game is isomorphic to Tic Tac Toe!
4 | 9 | 2 |
3 | 5 | 7 |
8 | 1 | 6 |
Converts to:
O | 9 | X |
X | O | O |
X | X | O |
- S∘T=IV
- T∘S=IW
- T(OV)=OW
- T(x+y)=T(x)+T(y)
- T(cV)=cT(V)
- Likewise for
- z=x+y ⇒ T(z)=T(x)+T(y)
- u=7v ⇒ T(u)=7T(v)
Proof of Theorem Assume dim V= dim W=n
- ∃ basis β= (U1...Un) of V
- α=(W1...Wn) of W
- by an earlier theorem, ∃ a l.t. T:V→W such that T(Ui)=Wi
(T(∑aiui)=∑aiT(ui)=∑aiui)
∃ a l.t. S:W→V s.t. S(Wi)=Ui
Claim
- S∘T=Iv
- T∘S=Iw
Proof
If u∈ unto U=∑aiui
- (S∘T)(u)=S(T(u))=S(T(∑aiui))
- =S(∑aiwi)=∑aiui=u
- ⇒S∘T=Iv...
- ⇒Assume T&S as above exist
- Choose a basis β= (U1...Un) of V
Claim
α=(W1=Tu1, W2=Tu2, ..., Wn=Tun)
- is a basis of W, so dim W=n
Proof
α is lin. indep.
- T(0)=0=∑aiwi=∑aiTui=T(∑aiui)
- Apply S to both sides:
- 0=∑aiui
- So ∃iai=0 as β is a basis
α Spans W
- Given any w∈W let u=S(W)
- As β is a basis find ais in F s.t. v=∑aiui
Apply T to both sides: T(S(W))=T(u)=T(∑aiui)=∑aiT(ui)=∑aiWi ∴ I win!!! (QED)