AKT-09/HW2: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 4: Line 4:
'''Solve the following problems''' and submit them in class by October 29, 2009:
'''Solve the following problems''' and submit them in class by October 29, 2009:


'''Problem 1.''' Let <math>{\mathfrak g}_1</math> and <math>{\mathfrak g}_2</math> be finite dimensional metrized Lie algebras, let <math>{\mathfrak g}_1\oplus{\mathfrak g}_2</math> denote their direct sum with the obvious "orthogonal" bracket and metric, and let <math>m</math> be the canonical isomorphism <math>m:{\mathcal U}({\mathfrak g}_1)\otimes{\mathcal U}({\mathfrak g}_2)\to{\mathcal U}({\mathfrak g}_1\oplus{\mathfrak g}_2)</math>. Prove that
'''Problem 1.'''
{{Equation*|<math>{\mathcal T}_{{\mathfrak g}_1\oplus{\mathfrak g}_2} = m\circ({\mathcal T}_{{\mathfrak g}_1}\otimes{\mathcal T}_{{\mathfrak g}_2})\circ\Box</math>,}}
where <math>\Box:{\mathcal A}(\uparrow)\to{\mathcal A}(\uparrow)\otimes{\mathcal A}(\uparrow)</math> is the co-product and <math>{\mathcal T}_{{\mathfrak g}}</math> denotes the <math>{\mathcal U}({\mathfrak g})</math>-valued "tensor map" on <math>{\mathcal A}</math>. Can you relate this with the first problem of [[AKT-09/HW1|HW1]]?

'''Problem 2.'''
# Find a concise algorithm to compute the weight system <math>W_{so}</math> associated with the Lie algebra <math>so(N)</math> in its defining representation.
# Find a concise algorithm to compute the weight system <math>W_{so}</math> associated with the Lie algebra <math>so(N)</math> in its defining representation.
# Verify that your algorithm indeed satisfies the <math>4T</math> relation.
# Verify that your algorithm indeed satisfies the <math>4T</math> relation.


'''Problem 2.''' The ''Kauffman polynomial'' <math>F(K)(a,z)</math> (see {{ref|Kauffman}}) of a knot or link <math>K</math> is <math>a^{-w(K)}L(K)</math> where <math>w(L)</math> is the writhe of <math>K</math> and where <math>L(K)</math> is the regular isotopy invariant defined by the skein relations
'''Problem 3.''' The ''Kauffman polynomial'' <math>F(K)(a,z)</math> (see {{ref|Kauffman}}) of a knot or link <math>K</math> is <math>a^{-w(K)}L(K)</math> where <math>w(L)</math> is the writhe of <math>K</math> and where <math>L(K)</math> is the regular isotopy invariant defined by the skein relations


{{Equation*|<math>L(s_\pm)=a^{\pm 1}L(s))</math>}}
{{Equation*|<math>L(s_\pm)=a^{\pm 1}L(s))</math>}}
Line 17: Line 21:


and by the initial condition <math>L(\bigcirc)=1</math>. State and prove the relationship between <math>F</math> and <math>W_{so}</math>.
and by the initial condition <math>L(\bigcirc)=1</math>. State and prove the relationship between <math>F</math> and <math>W_{so}</math>.

'''Problem 3.'''


'''Mandatory but unenforced.''' Find yourself in the class photo and identify yourself as explained in the [[AKT-09/Class Photo|photo page]].
'''Mandatory but unenforced.''' Find yourself in the class photo and identify yourself as explained in the [[AKT-09/Class Photo|photo page]].

Revision as of 12:14, 19 October 2009

In Preparation

The information below is preliminary and cannot be trusted! (v)

Solve the following problems and submit them in class by October 29, 2009:

Problem 1. Let and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathfrak g}_2} be finite dimensional metrized Lie algebras, let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathfrak g}_1\oplus{\mathfrak g}_2} denote their direct sum with the obvious "orthogonal" bracket and metric, and let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} be the canonical isomorphism Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m:{\mathcal U}({\mathfrak g}_1)\otimes{\mathcal U}({\mathfrak g}_2)\to{\mathcal U}({\mathfrak g}_1\oplus{\mathfrak g}_2)} . Prove that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathcal T}_{{\mathfrak g}_1\oplus{\mathfrak g}_2} = m\circ({\mathcal T}_{{\mathfrak g}_1}\otimes{\mathcal T}_{{\mathfrak g}_2})\circ\Box} ,

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Box:{\mathcal A}(\uparrow)\to{\mathcal A}(\uparrow)\otimes{\mathcal A}(\uparrow)} is the co-product and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathcal T}_{{\mathfrak g}}} denotes the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathcal U}({\mathfrak g})} -valued "tensor map" on . Can you relate this with the first problem of HW1?

Problem 2.

  1. Find a concise algorithm to compute the weight system Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W_{so}} associated with the Lie algebra Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle so(N)} in its defining representation.
  2. Verify that your algorithm indeed satisfies the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4T} relation.

Problem 3. The Kauffman polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(K)(a,z)} (see [Kauffman]) of a knot or link Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K} is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{-w(K)}L(K)} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w(L)} is the writhe of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K} and where is the regular isotopy invariant defined by the skein relations

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L(s_\pm)=a^{\pm 1}L(s))}

(here Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} is a strand and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_\pm} is the same strand with a Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pm} kink added) and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L(\backoverslash)+L(\slashoverback) = z\left(L(\smoothing)+L(\hsmoothing)\right)}

and by the initial condition Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L(\bigcirc)=1} . State and prove the relationship between Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W_{so}} .

Mandatory but unenforced. Find yourself in the class photo and identify yourself as explained in the photo page.

AKT-09-ClassPhoto.jpg

[Kauffman] ^  L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 312 (1990) 417-471.