AKT-09/Navigation: Difference between revisions
From Drorbn
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{| border="1px" cellpadding="1" cellspacing="0" width="100%" style="font-size: small; align: left" |
{| border="1px" cellpadding="1" cellspacing="0" width="100%" style="font-size: small; align: left" |
||
|- align=left |
|||
|- |
|||
!# |
!# |
||
!Week of... |
!Week of... |
||
Line 8: | Line 8: | ||
|Sep 7 |
|Sep 7 |
||
|[[AKT-09/About This Class|About This Class]]<br/>{{AKT-09/vp|0910-1}}<br/>{{AKT-09/vp|0910-2}}<br/>[[AKT-09/Tricolourability|Tricolourability]] |
|[[AKT-09/About This Class|About This Class]]<br/>{{AKT-09/vp|0910-1}}<br/>{{AKT-09/vp|0910-2}}<br/>[[AKT-09/Tricolourability|Tricolourability]] |
||
|- align=left |
|||
|- |
|||
|align=center|2 |
|align=center|2 |
||
|Sep 14 |
|Sep 14 |
||
|{{AKT-09/vp|0915}}<br/>{{AKT-09/vp|0917-1}}<br/>{{AKT-09/vp|0917-2}} |
|{{AKT-09/vp|0915}}<br/>{{AKT-09/vp|0917-1}}<br/>{{AKT-09/vp|0917-2}} |
||
|- align=left |
|||
|- |
|||
|align=center|3 |
|align=center|3 |
||
|Sep 21 |
|Sep 21 |
||
|{{AKT-09/vp|0922}}<br/>{{AKT-09/vp|0924-1}}<br/>[[AKT-09/Class Photo|Class Photo]]<br/>{{AKT-09/vp|0924-2}} |
|{{AKT-09/vp|0922}}<br/>{{AKT-09/vp|0924-1}}<br/>[[AKT-09/Class Photo|Class Photo]]<br/>{{AKT-09/vp|0924-2}} |
||
|- align=left |
|||
|- |
|||
|align=center|4 |
|align=center|4 |
||
|Sep 28 |
|Sep 28 |
||
|[[AKT-09/HW1|HW1]] |
|[[AKT-09/HW1|HW1]] |
||
|- align=left |
|||
|- |
|||
|align=center|5 |
|align=center|5 |
||
|Oct 5 |
|Oct 5 |
||
| |
| |
||
|- align=left |
|||
|- |
|||
|align=center|6 |
|align=center|6 |
||
|Oct 12 |
|Oct 12 |
||
|[[AKT-09/HW2|HW2]] |
|[[AKT-09/HW2|HW2]] |
||
|- align=left |
|||
|- |
|||
|align=center|7 |
|align=center|7 |
||
|Oct 19 |
|Oct 19 |
||
| |
| |
||
|- align=left |
|||
|- |
|||
|align=center|8 |
|align=center|8 |
||
|Oct 26 |
|Oct 26 |
||
|[[AKT-09/HW3|HW3]] |
|[[AKT-09/HW3|HW3]] |
||
|- align=left |
|||
|- |
|||
|align=center|9 |
|align=center|9 |
||
|Nov 2 |
|Nov 2 |
||
| |
| |
||
|- align=left |
|||
|- |
|||
|align=center|10 |
|align=center|10 |
||
|Nov 9 |
|Nov 9 |
||
|[[AKT-09/HW4|HW4]]<br/>No Thursday class. |
|[[AKT-09/HW4|HW4]]<br/>No Thursday class. |
||
|- align=left |
|||
|- |
|||
|align=center|11 |
|align=center|11 |
||
|Nov 16 |
|Nov 16 |
||
| |
| |
||
|- align=left |
|||
|- |
|||
|align=center|12 |
|align=center|12 |
||
|Nov 23 |
|Nov 23 |
||
|[[AKT-09/HW5|HW5]] |
|[[AKT-09/HW5|HW5]] |
||
|- align=left |
|||
|- |
|||
|align=center|13 |
|align=center|13 |
||
|Nov 30 |
|Nov 30 |
||
| |
| |
||
|- align=left |
|||
|- |
|||
|colspan=3 align=center|[[AKT-09/Register of Good Deeds|Register of Good Deeds]] / [[AKT-09/To Do|To Do List]] |
|colspan=3 align=center|[[AKT-09/Register of Good Deeds|Register of Good Deeds]] / [[AKT-09/To Do|To Do List]] |
||
|- align=left |
|||
|- |
|||
|colspan=3 align=center|[[Image:AKT-09-ClassPhoto.jpg|310px]]<br/>[[AKT-09/Class Photo|Add your name / see who's in!]] |
|colspan=3 align=center|[[Image:AKT-09-ClassPhoto.jpg|310px]]<br/>[[AKT-09/Class Photo|Add your name / see who's in!]] |
||
|- align=left |
|||
|- |
|||
|colspan=3 align=center|[[Image:3x4bbs.jpg|310px]] |
|colspan=3 align=center|[[Image:3x4bbs.jpg|310px]] |
||
|} |
|} |
Revision as of 17:21, 28 September 2009
# | Week of... | Videos, Notes, and Links |
---|---|---|
1 | Sep 7 | About This Class 090910-1: 3-colourings, Reidemeister's theorem, invariance, the Kauffman bracket. 090910-2: R23 invariance of the bracket, R1, the writhe, the Jones polynomial, programming the Jones polynomial. Tricolourability |
2 | Sep 14 | 090915: More on Jones, some pathologies and more on Reidemeister, our overall agenda. 090917-1: The definition of finite type, weight systems, Jones is a finite type series. 090917-2: The skein relation for Jones; HOMFLY-PT and Conway; the weight system of Jones. |
3 | Sep 21 | 090922: FI, 4T, HOMFLY and FI and 4T, statement of the Fundamental Theorem, framed knots. 090924-1: Some dimensions of , is a commutative algebra, . Class Photo 090924-2: is a co-commutative algebra, the relation with products of invariants, is a bi-algebra. |
4 | Sep 28 | HW1 |
5 | Oct 5 | |
6 | Oct 12 | HW2 |
7 | Oct 19 | |
8 | Oct 26 | HW3 |
9 | Nov 2 | |
10 | Nov 9 | HW4 No Thursday class. |
11 | Nov 16 | |
12 | Nov 23 | HW5 |
13 | Nov 30 | |
Register of Good Deeds / To Do List | ||
Add your name / see who's in! | ||