AKT-09/Navigation: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
Line 4: Line 4:
!Week of...
!Week of...
!Videos, Notes, and Links
!Videos, Notes, and Links
|-
|- align=left
|align=center|1
|align=center|1
|Sep 7
|Sep 7
|[[AKT-09/About This Class|About This Class]]<br/>{{AKT-09/vp|0910-1}}<br/>{{AKT-09/vp|0910-2}}<br/>[[AKT-09/Tricolourability|Tricolourability]]
|align=left|[[AKT-09/About This Class|About This Class]]<br/>{{AKT-09/vp|0910-1}}<br/>{{AKT-09/vp|0910-2}}<br/>[[AKT-09/Tricolourability|Tricolourability]]
|-
|-
|align=center|2
|align=center|2

Revision as of 17:19, 28 September 2009

# Week of... Videos, Notes, and Links
1 Sep 7 About This Class
dbnvp 090910-1: 3-colourings, Reidemeister's theorem, invariance, the Kauffman bracket.
dbnvp 090910-2: R23 invariance of the bracket, R1, the writhe, the Jones polynomial, programming the Jones polynomial.
Tricolourability
2 Sep 14 dbnvp 090915: More on Jones, some pathologies and more on Reidemeister, our overall agenda.
dbnvp 090917-1: The definition of finite type, weight systems, Jones is a finite type series.
dbnvp 090917-2: The skein relation for Jones; HOMFLY-PT and Conway; the weight system of Jones.
3 Sep 21 dbnvp 090922: FI, 4T, HOMFLY and FI and 4T, statement of the Fundamental Theorem, framed knots.
dbnvp 090924-1: Some dimensions of , is a commutative algebra, .
Class Photo
dbnvp 090924-2: is a co-commutative algebra, the relation with products of invariants, is a bi-algebra.
4 Sep 28 HW1
5 Oct 5  
6 Oct 12 HW2
7 Oct 19  
8 Oct 26 HW3
9 Nov 2  
10 Nov 9 HW4
No Thursday class.
11 Nov 16  
12 Nov 23 HW5
13 Nov 30  
Register of Good Deeds / To Do List
AKT-09-ClassPhoto.jpg
Add your name / see who's in!
3x4bbs.jpg