06-240/Classnotes For Thursday, September 21: Difference between revisions
From Drorbn
Jump to navigationJump to search
No edit summary |
|||
(3 intermediate revisions by 2 users not shown) | |||
Line 13: | Line 13: | ||
==Force Vectors== |
==Force Vectors== |
||
A force has a direction and a magnitude. |
A force has a direction and a magnitude. |
||
# |
# There is a special force vector called 0. |
||
# |
# They can be added. |
||
# |
# They can be multiplied by any scalar. |
||
====''Properties''==== |
====''Properties''==== |
||
(convention: <math>x,y,z</math> are vectors; <math>a,b,c</math> are scalars) |
|||
#<math> x |
#<math> x+y=y+x </math> |
||
#<math> x |
#<math> x+(y+z)=(x+y)+z \ </math> |
||
#<math> x |
#<math> x+0=x \ </math> |
||
#<math> \forall x\; \exists\ y \ \mbox{ s.t. }x |
#<math> \forall x\; \exists\ y \ \mbox{ s.t. }x+y=0</math> |
||
#<math> 1\cdot x=x \ </math> |
#<math> 1\cdot x=x \ </math> |
||
#<math> a(bx)=(ab)x \ </math> |
#<math> a(bx)=(ab)x \ </math> |
||
#<math> a(x |
#<math> a(x+y)=ax+ay \ </math> |
||
#<math> (a |
#<math> (a+b)x=ax+bx \ </math> |
||
=====Definition===== |
=====Definition===== |
||
Line 33: | Line 33: | ||
Let F be a field "of scalars". A vector space over F is a set V, of "vectors", along with two operations |
Let F be a field "of scalars". A vector space over F is a set V, of "vectors", along with two operations |
||
: <math> |
: <math> +: V \times V \to V </math> |
||
: <math> \cdot: F \times V \to V \mbox{, so that:}</math> |
: <math> \cdot: F \times V \to V \mbox{, so that:}</math> |
||
#<math> \forall x,y \in V\ x |
#<math> \forall x,y \in V\ x+y=y+x </math> |
||
#<math> \forall x,y \in V\ x |
#<math> \forall x,y \in V\ x+(y+z)=(x+y)+z </math> |
||
#<math> \exists\ 0 \in V s.t.\; \forall x \in V\ x |
#<math> \exists\ 0 \in V s.t.\; \forall x \in V\ x+0=x </math> |
||
#<math> \forall x \in V\; \exists\ y \in V\ s.t. \ x |
#<math> \forall x \in V\; \exists\ y \in V\ s.t. \ x+y=0</math> |
||
#<math> 1\cdot x=x\ </math> |
#<math> 1\cdot x=x\ </math> |
||
#<math> a(bx)=(ab)x\ </math> |
#<math> a(bx)=(ab)x\ </math> |
||
#<math> a(x |
#<math> a(x+y)=ax+ay\ </math> |
||
#<math> \forall x \in V\ ,\forall a,b \in F\ (a |
#<math> \forall x \in V\ ,\forall a,b \in F\ (a+b)x=ax+bx </math> |
||
----- |
----- |
||
9. <math> x \mapsto \vert x\vert \in \mathbb{R} \ \vert x |
9. <math> x \mapsto \vert x\vert \in \mathbb{R} \ \vert x+y\vert \le \vert x\vert+\vert y\vert </math> |
||
====''Examples''==== |
====''Examples''==== |
||
'''Ex.1.''' |
'''Ex.1.''' |
||
Line 50: | Line 50: | ||
<math> n \in \mathbb{Z}\ , n \ge 0 </math> <br/> |
<math> n \in \mathbb{Z}\ , n \ge 0 </math> <br/> |
||
<math> x=(a_1,\ldots,a_2)\ y=(b_1,\ldots, b_2)\ </math> <br/> |
<math> x=(a_1,\ldots,a_2)\ y=(b_1,\ldots, b_2)\ </math> <br/> |
||
<math> x |
<math> x+y:=(a_1+b_1,a_2+b_2,\ldots,a_n+b_n)\ </math> <br/> |
||
<math> 0_{F^n}=(0,\ldots,0) </math> <br/> |
<math> 0_{F^n}=(0,\ldots,0) </math> <br/> |
||
<math> a\in F\ ax=(aa_1,aa_2,\ldots,aa_n) </math> <br/> |
<math> a\in F\ ax=(aa_1,aa_2,\ldots,aa_n) </math> <br/> |
||
<math> \mbox{In } \mathbb{Q}^3 \ \left( \frac{3}{2},-2,7\right) |
<math> \mbox{In } \mathbb{Q}^3 \ \left( \frac{3}{2},-2,7\right)+\left( \frac{-3}{2}, \frac{1}{3},240\right)=\left(0, \frac{-5}{3},247\right) </math> <br/> |
||
<math> 7\left( \frac{1}{5},\frac{1}{7},\frac{1}{9}\right)=\left( \frac{7}{5},1,\frac{7}{9}\right) </math> <br/> |
<math> 7\left( \frac{1}{5},\frac{1}{7},\frac{1}{9}\right)=\left( \frac{7}{5},1,\frac{7}{9}\right) </math> <br/> |
||
'''Ex.2.''' |
'''Ex.2.''' |
||
<math> V=M_{m\times n}(F)=\left\lbrace\begin{pmatrix} a_{11} |
<math> V=M_{m\times n}(F)=\left\lbrace\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & |
||
& \vdots \\ a_{m1} & \cdots & a_{mn}\end{pmatrix}: a_{ij} \in F \right\rbrace </math> <br/> |
|||
<math> M_{3\times 2}( \mathbb{R})\ni \begin{pmatrix} 7 & -7 \\ \pi & \mathit{e} \\ -5 & 2 \end{pmatrix} </math> <br/> |
|||
<math>\mbox{Addition by adding entry by entry:}</math> |
|||
<math> M_{2\times 2}\ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}+\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}=\begin{pmatrix} {a_{11}+b_{11}} & {a_{12}+b_{12}} \\ {a_{21}+b_{21}} & {a_{22}+b_{22}} \end{pmatrix}</math> <br/> |
|||
<math>\mbox{Multiplication by multiplying scalar c to all entries by M.}</math> |
|||
<math> c\cdot M_{2\times 2}\ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}=\begin{pmatrix} c\cdot a_{11} & c\cdot a_{12} \\ c\cdot a_{21} & c\cdot a_{22} \end{pmatrix}</math> <br/> <br/> |
|||
<math>\mbox{Zero matrix has all entries = 0:}</math> |
|||
<math> 0_{M_{m\times n}}=\begin{pmatrix} 0 & \cdots & 0 \\ \vdots & |
|||
& \vdots \\ 0 & \cdots & 0\end{pmatrix} </math> <br/> |
|||
'''Ex.3.''' |
|||
<math> \mathbb{C}</math> form a vector space over <math> \mathbb{R}</math>. <br/> |
|||
'''Ex.4.''' |
|||
<math>\mbox{F is a vector space over itself.}</math> <br/> |
|||
'''Ex.5.''' |
|||
<math> \mathbb{R}</math> is a vector space over <math> \mathbb{Q}</math>. <br/> |
|||
'''Ex.6.''' |
|||
<math>\mbox{Let S be a set. Let}</math> <br/> |
|||
<math> \mathcal{F}(S,\mathbb{R})=\big\{f:S\to \mathbb{R} \big\} </math> <br/> |
|||
<math> f,g \in \mathcal{F}(S,\mathbb{R}) </math> <br/> |
|||
<math> (f+g)(t)=f(t)+g(t)\ for\ any\ t\in S </math> <br/> |
|||
<math> (af)(t)=a\cdot f(t)\ </math> |
Latest revision as of 06:42, 11 July 2007
|
Scan of Lecture Notes
- PDF file by User:Alla: Week 2 Lecture 2 notes
- PDF file by User:Gokmen: Week 2 Lecture 2 notes
Scan of Tutorial notes
- PDF file by User:Alla: Week 2 Tutorial notes
- PDF file by User:Gokmen: Week 2 Tutorial notes
Force Vectors
A force has a direction and a magnitude.
- There is a special force vector called 0.
- They can be added.
- They can be multiplied by any scalar.
Properties
(convention: are vectors; are scalars)
Definition
Let F be a field "of scalars". A vector space over F is a set V, of "vectors", along with two operations
9.
Examples
Ex.1.
Ex.2.
Ex.3.
form a vector space over .
Ex.4.
Ex.5.
is a vector space over .
Ex.6.