The HOMFLY Braidor Algebra: Difference between revisions

From Drorbn
Jump to navigationJump to search
 
(One intermediate revision by the same user not shown)
Line 37: Line 37:
'''Lemma.''' The following identities hold in <math>A_n</math>:
'''Lemma.''' The following identities hold in <math>A_n</math>:
# <math>[t_i^k, t_j] = x\sigma_{ij}(t_i^k-t_j^k)</math> and therefore <math>[e^{\alpha t_i}, t_j] = x\sigma_{ij}(e^{\alpha t_i}-e^{\alpha t_j})</math>.
# <math>[t_i^k, t_j] = x\sigma_{ij}(t_i^k-t_j^k)</math> and therefore <math>[e^{\alpha t_i}, t_j] = x\sigma_{ij}(e^{\alpha t_i}-e^{\alpha t_j})</math>.
# <math>[t_i^k, t_j^l] = x\sigma_{ij}\left(\frac{t_i^{k+l}+t_j^{k+l}-t_i^kt_j^l-t_i^lt_j^k}{t_i-t_j}\right)</math> and therefore <math>[e^{\alpha t_i}, e^{\beta t_j}] = x\sigma_{ij}\left(\frac{e^{(\alpha+\beta)t_i+e^{(\alpha+\beta)t_j}-e^{\alpha t_i+\beta t_j}-e^{\beta t_i+\alpha t_j}}{t_i-t_j}\right)</math> <br>(The right hand sides of these expressions should be interpreted as polynomials / power series in commuting variables <math>x</math>, <math>t_i</math> and <math>t_j</math>, and then the "true" <math>x</math>, <math>t_i</math> and <math>t_j</math> are to be substituted in, in "normal order" - in every monomial the variables are written so that every <math>t_i</math> occurs before any <math>t_j</math>).
# <math>[t_i^k, t_j^l] = x\sigma_{ij}\left(\frac{t_i^{k+l}+t_j^{k+l}-t_i^kt_j^l-t_i^lt_j^k}{t_i-t_j}\right)</math> and therefore <math>[e^{\alpha t_i}, e^{\beta t_j}] = x\sigma_{ij}\left(\frac{e^{(\alpha+\beta)t_i}+e^{(\alpha+\beta)t_j}-e^{\alpha t_i+\beta t_j}-e^{\beta t_i+\alpha t_j}}{t_i-t_j}\right)</math> <br>(The right hand sides of these expressions should be interpreted as polynomials / power series in commuting variables <math>x</math>, <math>t_i</math> and <math>t_j</math>, and then the "true" <math>x</math>, <math>t_i</math> and <math>t_j</math> are to be substituted in, in "normal order" - in every monomial the variables are written so that every <math>t_i</math> occurs before any <math>t_j</math>).
# <math>\Delta(t_i^k) = t_{i+1}^k + \frac{x}{2} \left(\frac{(t_{i+1}+x)^k-t_1^k}{t_{i+1}+x-t_1} - \frac{(t_{i+1}-x)^k-t_1^k}{t_{i+1}-x-t_1}\right) + \sigma_{1,i+1}\frac{x}{2} \left(\frac{(t_{i+1}+x)^k-t_1^k}{t_{i+1}+x-t_1} + \frac{(t_{i+1}-x)^k-t_1^k}{t_{i+1}-x-t_1}\right)</math> and therefore <math>\Delta(e^{t_i}) = e^{t_{i+1}} + \frac{x}{2} \left(\frac{e^{t_{i+1}+x}-e^{t_1}}{t_{i+1}+x-t_1} - \frac{e^{t_{i+1}-x}-e^{t_1}}{t_{i+1}-x-t_1}\right) + \sigma_{1,i+1}\frac{x}{2} \left(\frac{e^{t_{i+1}+x}-e^{t_1}}{t_{i+1}+x-t_1} + \frac{e^{t_{i+1}-x}-e^{t_1}}{t_{i+1}-x-t_1}\right)</math>. (The right hand sides of these expressions should be interpreted as polynomials / power series in commuting variables <math>x</math>, <math>t_1</math> and <math>t_{i+1}</math>, and then the "true" <math>x</math>, <math>t_1</math> and <math>t_{i+1}</math> are to be substituted in, in "normal order" - in every monomial the variables are written so that their subscripts form a non-decreasing sequence).
# <math>\Delta(t_i^k) = t_{i+1}^k + \frac{x}{2} \left(\frac{(t_{i+1}+x)^k-t_1^k}{t_{i+1}+x-t_1} - \frac{(t_{i+1}-x)^k-t_1^k}{t_{i+1}-x-t_1}\right) + \sigma_{1,i+1}\frac{x}{2} \left(\frac{(t_{i+1}+x)^k-t_1^k}{t_{i+1}+x-t_1} + \frac{(t_{i+1}-x)^k-t_1^k}{t_{i+1}-x-t_1}\right)</math> and therefore <math>\Delta(e^{t_i}) = e^{t_{i+1}} + \frac{x}{2} \left(\frac{e^{t_{i+1}+x}-e^{t_1}}{t_{i+1}+x-t_1} - \frac{e^{t_{i+1}-x}-e^{t_1}}{t_{i+1}-x-t_1}\right) + \sigma_{1,i+1}\frac{x}{2} \left(\frac{e^{t_{i+1}+x}-e^{t_1}}{t_{i+1}+x-t_1} + \frac{e^{t_{i+1}-x}-e^{t_1}}{t_{i+1}-x-t_1}\right)</math>. (The right hand sides of these expressions should be interpreted as polynomials / power series in commuting variables <math>x</math>, <math>t_1</math> and <math>t_{i+1}</math>, and then the "true" <math>x</math>, <math>t_1</math> and <math>t_{i+1}</math> are to be substituted in, in "normal order" - in every monomial the variables are written so that their subscripts form a non-decreasing sequence).


Line 48: Line 48:
A primitive mathematica program to play with these objects is [http://katlas.math.toronto.edu/svn/06-1350/ here].
A primitive mathematica program to play with these objects is [http://katlas.math.toronto.edu/svn/06-1350/ here].


==A Numerology Problem==
==Numerology Problems==

===Exponential Version===


'''Question.''' Can you find nice formulas for the functions <math>f_{12}</math> and <math>f_{21}</math> of the variables <math>t_1</math>, <math>t_2</math> and <math>x</math>, whose Taylor expansions begin with
'''Question.''' Can you find nice formulas for the functions <math>f_{12}</math> and <math>f_{21}</math> of the variables <math>t_1</math>, <math>t_2</math> and <math>x</math>, whose Taylor expansions begin with


<math>f_{12}=x+\frac{x t_2}{3}-\frac{x t_1}{3}</math>
<math>f_{12}=x+\frac{x t_2}{3}-\frac{x t_1}{3}+\frac{x^3}{6}-\frac{13}{90} t_1 x^3+\frac{13 t_2 x^3}{90}+\frac{t_1^3 x}{45}-\frac{t_2^3 x}{45}+\frac{1}{15} t_1 t_2^2 x-\frac{1}{15} t_1^2 t_2 x</math>
:<math>+\frac{x^5}{120}-\frac{37 t_1 x^5}{7560}+\frac{37 t_2 x^5}{7560}+\frac{31 t_1^3 x^3}{1890}-\frac{31 t_2^3 x^3}{1890}+\frac{31}{630} t_1 t_2^2 x^3-\frac{31}{630} t_1^2 t_2 x^3</math>
::<math>-\frac{2 t_1^5 x}{945}+\frac{2 t_2^5 x}{945}-\frac{2}{189} t_1 t_2^4 x+\frac{4}{189} t_1^2 t_2^3 x-\frac{4}{189} t_1^3 t_2^2 x+\frac{2}{189} t_1^4 t_2 x</math>
:<math>+\frac{x^7}{5040}-\frac{29 t_1 x^7}{75600}+\frac{29 t_2 x^7}{75600}+\frac{293 t_1^3 x^5}{113400}-\frac{293 t_2^3 x^5}{113400}-\frac{521 t_1 t_2^2 x^5}{113400}+\frac{521 t_1^2 t_2 x^5}{113400}</math>
::<math>-\frac{29 t_1^5 x^3}{14175}+\frac{29 t_2^5 x^3}{14175}-\frac{29 t_1 t_2^4 x^3}{2835}+\frac{58 t_1^2 t_2^3 x^3}{2835}-\frac{58 t_1^3 t_2^2 x^3}{2835}+\frac{29 t_1^4 t_2 x^3}{2835}</math>
::<math>+\frac{t_1^7 x}{4725}-\frac{t_2^7 x}{4725}+\frac{1}{675} t_1 t_2^6 x-\frac{1}{225} t_1^2 t_2^5 x+\frac{1}{135} t_1^3 t_2^4 x-\frac{1}{135} t_1^4 t_2^3 x+\frac{1}{225} t_1^5 t_2^2 x-\frac{1}{675} t_1^6 t_2 x</math>
:<math>+\frac{x^9}{362880}+\frac{1129 t_1 x^9}{59875200}-\frac{1129 t_2 x^9}{59875200}-\frac{743 t_1^3 x^7}{7484400}+\frac{743 t_2^3 x^7}{7484400}+\frac{779 t_1 t_2^2 x^7}{831600}-\frac{779 t_1^2 t_2 x^7}{831600}</math>
::<math>-\frac{347 t_1^5 x^5}{623700}+\frac{347 t_2^5 x^5}{623700}-\frac{85 t_1 t_2^4 x^5}{74844}-\frac{223 t_1^2 t_2^3 x^5}{37422}+\frac{223 t_1^3 t_2^2 x^5}{37422}+\frac{85 t_1^4 t_2 x^5}{74844}</math>
::<math>+\frac{233 t_1^7 x^3}{935550}-\frac{233 t_2^7 x^3}{935550}+\frac{233 t_1 t_2^6 x^3}{133650}-\frac{233 t_1^2 t_2^5 x^3}{44550}+\frac{233 t_1^3 t_2^4 x^3}{26730}-\frac{233 t_1^4 t_2^3 x^3}{26730}+\frac{233 t_1^5 t_2^2 x^3}{44550}-\frac{233 t_1^6 t_2 x^3}{133650}</math>
::<math>-\frac{2 t_1^9 x}{93555}+\frac{2 t_2^9 x}{93555}-\frac{2 t_1 t_2^8 x}{10395}+\frac{8 t_1^2 t_2^7 x}{10395}-\frac{8 t_1^3 t_2^6 x}{4455}+\frac{4 t_1^4 t_2^5 x}{1485}-\frac{4 t_1^5 t_2^4 x}{1485}+\frac{8 t_1^6 t_2^3 x}{4455}-\frac{8 t_1^7 t_2^2 x}{10395}+\frac{2 t_1^8 t_2 x}{10395}</math>

and

<math>f_{21}=1+\frac{x^2}{2}+\frac{x^4}{24}-\frac{1}{9} t_1^2 x^2+\frac{1}{9} t_1 t_2 x^2</math>
:<math>+\frac{x^6}{720}-\frac{1}{270} t_1^2 x^4+\frac{1}{270} t_1 t_2 x^4+\frac{2}{135} t_1^4 x^2+\frac{2}{45} t_1^2 t_2^2 x^2-\frac{8}{135} t_1^3 t_2 x^2</math>
:<math>+\frac{x^8}{40320}-\frac{41 t_1^2 x^6}{113400}+\frac{41 t_1 t_2 x^6}{113400}+\frac{4 t_1^4 x^4}{1575}-\frac{67 t_1^2 t_2^2 x^4}{14175}+\frac{31 t_1^3 t_2 x^4}{14175}-\frac{1}{525} t_1^6 x^2+\frac{2}{105} t_1^3 t_2^3 x^2-\frac{1}{35} t_1^4 t_2^2 x^2+\frac{2}{175} t_1^5 t_2 x^2</math>
:<math>+\frac{x^{10}}{3628800}+\frac{13 t_1^2 x^8}{680400}-\frac{13 t_1 t_2 x^8}{680400}-\frac{17 t_1^4 x^6}{170100}+\frac{53 t_1^2 t_2^2 x^6}{56700}-\frac{71 t_1^3 t_2 x^6}{85050}-\frac{47 t_1^6 x^4}{85050}-\frac{17 t_1^3 t_2^3 x^4}{2835}+\frac{83 t_1^4 t_2^2 x^4}{17010}+\frac{71 t_1^5 t_2 x^4}{42525}</math>
::<math>+\frac{2 t_1^8 x^2}{8505}+\frac{2}{243} t_1^4 t_2^4 x^2-\frac{16 t_1^5 t_2^3 x^2}{1215}+\frac{8 t_1^6 t_2^2 x^2}{1215}-\frac{16 t_1^7 t_2 x^2}{8505}</math>?

(These Taylor expansions are also available within the mathematica notebook [http://katlas.math.toronto.edu/svn/06-1350/HOMFLY%20Braidor%20-%20Braidor%20Computations.nb HOMFLY Braidor - Braidor Computations.nb]).

===Non-Exponential Version===

'''Question.''' Can you find nice formulas for the functions <math>f'_{12}</math> and <math>f'_{21}</math> of the variables <math>t_1</math>, <math>t_2</math> and <math>x</math>, whose Taylor expansions begin with

<math>f'_{12}=x+\frac{x t_2}{3}-\frac{x t_1}{3}</math>
:<math>-\frac{1}{5} t_1 x^3+\frac{t_2 x^3}{5}+\frac{t_1^3 x}{45}-\frac{t_2^3
:<math>-\frac{1}{5} t_1 x^3+\frac{t_2 x^3}{5}+\frac{t_1^3 x}{45}-\frac{t_2^3
x}{45}+\frac{1}{15} t_1 t_2^2 x-\frac{1}{15} t_1^2 t_2 x</math>
x}{45}+\frac{1}{15} t_1 t_2^2 x-\frac{1}{15} t_1^2 t_2 x</math>
Line 104: Line 131:
and
and


<math>f_{21}=1+\frac{1}{9} x^2 t_1 t_2-\frac{1}{9} x^2 t_1^2 -\frac{13}{135} t_1^2 x^4+\frac{13}{135} t_1 t_2 x^4+\frac{2}{135}
<math>f'_{21}=1+\frac{1}{9} x^2 t_1 t_2-\frac{1}{9} x^2 t_1^2 -\frac{13}{135} t_1^2 x^4+\frac{13}{135} t_1 t_2 x^4+\frac{2}{135}
t_1^4 x^2+\frac{2}{45} t_1^2 t_2^2 x^2-\frac{8}{135} t_1^3 t_2 x^2</math>
t_1^4 x^2+\frac{2}{45} t_1^2 t_2^2 x^2-\frac{8}{135} t_1^3 t_2 x^2</math>
:<math>-\frac{1147 t_1^2 x^6}{14175}+\frac{1147 t_1 t_2
:<math>-\frac{1147 t_1^2 x^6}{14175}+\frac{1147 t_1 t_2

Latest revision as of 14:51, 26 February 2007

In Preparation

The information below is preliminary and cannot be trusted! (v)

This paperlet is about yet another construction of the HOMFLY polynomial, this time using "braidor equations". Though at the moment the term "braidor equations", the relationship with HOMFLY and the rationale for the whole plan is not yet described here. If you know what this is about, good. If not, bummer.

The Algebra

Let be the free associative (but non-commutative) algebra generated by the elements of the symmetric group on and by formal variables and , and let be the quotient of by the following "HOMFLY" relations:

  1. commutes with everything else.
  2. The product of permutations is as in the symmetric group .
  3. If is a permutation then .
  4. , where is the transposition of and .

Finally, declare that while for every and every , and let be the graded completion of .

We say that an element of is "sorted" if it is written in the form where is a permutation and and the 's are all non-negative integer. The HOMFLY relations imply that every element of is a linear combinations of sorted elements. Thus as a vector space, can be identified with the ring of power series in the variables tensored with the group ring of . The product of is of course very different than that of .

Examples.

  1. The general element of is where denotes the identity permutation and is a power series in two variables and . is commutative.
  2. The general element of is where and are power series in three variables and and are the two elements of . is not commutative and its product is non-trivial to describe.
  3. The general element of is described using power series in 4 variables. The general element of is described using n! power series in variables.

The algebra embeds in in a trivial way by regarding as a subset of in the obvious manner; thus when given an element of we are free to think of it also as an element of . There is also a non-trivial map defined as follows:

  1. .
  2. .
  3. acts on permutations by "shifting them one unit to the right", i.e., by identifying with .

The Equations

We seek to find a "braidor"; an element of satisfying:

  • (higher order terms).
  • in .

With the vector space identification of with in mind, we are seeking two power series of three variables each, whose low order behaviour is specified and which are required to satisfy 6 functional equations written in terms of 4 variables.

The Equations in Functional Form

Lemma. The following identities hold in :

  1. and therefore .
  2. and therefore
    (The right hand sides of these expressions should be interpreted as polynomials / power series in commuting variables , and , and then the "true" , and are to be substituted in, in "normal order" - in every monomial the variables are written so that every occurs before any ).
  3. and therefore . (The right hand sides of these expressions should be interpreted as polynomials / power series in commuting variables , and , and then the "true" , and are to be substituted in, in "normal order" - in every monomial the variables are written so that their subscripts form a non-decreasing sequence).

A Solution

The first few terms of a solution can be computed using a computer, as shown below. But a true solution, written in a functional form, is still missing.

Computer Games

A primitive mathematica program to play with these objects is here.

Numerology Problems

Exponential Version

Question. Can you find nice formulas for the functions and of the variables , and , whose Taylor expansions begin with

and

?

(These Taylor expansions are also available within the mathematica notebook HOMFLY Braidor - Braidor Computations.nb).

Non-Exponential Version

Question. Can you find nice formulas for the functions and of the variables , and , whose Taylor expansions begin with

and

?

(These Taylor expansions are also available within the mathematica notebook HOMFLY Braidor - Braidor Computations.nb).