User:Shawkm/06-1350-HW4: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 92: Line 92:


{{InOut|n=4|in=<nowiki>BAroundB[x1, x2, x3, x4, x5] /. d2 /. d1</nowiki>|out=<nowiki>0</nowiki>}}
{{InOut|n=4|in=<nowiki>BAroundB[x1, x2, x3, x4, x5] /. d2 /. d1</nowiki>|out=<nowiki>0</nowiki>}}



===Here Goes Something New(?)===

The first thing to notice is that the relation <math>\rho_3 </math> holds for <math> b^+ <\math> and <math> b^- <\math> so we have another version:
{| align=center
|-
|<math>\rho_3(x_1, x_2, x_3, x_4) = </math>
|<math>b^-(x_1,x_2,x_3) + b^-(x_1+x_3,x_2,x_4) + b^-(x_1,x_3,x_4)</math>
|-
|
|<math>- b^-(x_1+x_2,x_3,x_4) - b^-(x_1,x_2,x_4) - b^-(x_1+x_4,x_2,x_3).</math>
|}

This is probably a completely trivial remark, and it is also trivial to see that mathematica will deal with this in the same way as for <math> b^+ <\math> so I won't verify that <math> d^2 =0 <\math>.</math>

Revision as of 19:27, 2 December 2006

The Generators

Our generators are , , and :

Picture 06-1350-BPlus.svg
Generator
Perturbation

The Relations

The Reidemeister Move R3

The picture (with three sides of the shielding removed) is

06-1350-R4.svg

In formulas, this is

.

Linearized and written in functional form, this becomes

The Syzygies

The "B around B" Syzygy

The picture, with all shielding removed, is

06-1350-BAroundB.svg
(Drawn with Inkscape)
(note that lower quality pictures are also acceptable)

The functional form of this syzygy is

A Mathematica Verification

The following simulated Mathematica session proves that for our single relation and single syzygy, . Copy paste it into a live Mathematica session to see that it's right!

In[1]:= d1 = { rho3[x1_, x2_, x3_, x4_] :> bp[x1, x2, x3] + bp[x1 + x3, x2, x4] + bp[x1, x3, x4] - bp[x1 + x2, x3, x4] - bp[x1, x2, x4] - bp[x1 + x4, x2, x3] }; d2 = { BAroundB[x1_, x2_, x3_, x4_, x5_] :> rho3[x1, x2, x3, x5] + rho3[x1 + x5, x2, x3, x4] - rho3[x1 + x2, x3, x4, x5] - rho3[x1, x2, x4, x5] - rho3[x1 + x4, x2, x3, x5] - rho3[x1, x2, x3, x4] + rho3[x1, x3, x4, x5] + rho3[x1 + x3, x2, x4, x5] };
In[3]:= BAroundB[x1, x2, x3, x4, x5] /. d2
Out[3]= - rho3[x1, x2, x3, x4] + rho3[x1, x2, x3, x5] - rho3[x1, x2, x4, x5] + rho3[x1, x3, x4, x5] - rho3[x1 + x2, x3, x4, x5] + rho3[x1 + x3, x2, x4, x5] - rho3[x1 + x4, x2, x3, x5] + rho3[x1 + x5, x2, x3, x4]
In[4]:= BAroundB[x1, x2, x3, x4, x5] /. d2 /. d1
Out[4]= 0


Here Goes Something New(?)

The first thing to notice is that the relation holds for Failed to parse (unknown function "\math"): {\displaystyle b^+ <\math> and <math> b^- <\math> so we have another version: {| align=center |- |<math>\rho_3(x_1, x_2, x_3, x_4) = } | |- | | |}

This is probably a completely trivial remark, and it is also trivial to see that mathematica will deal with this in the same way as for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b^+ <\math> so I won't verify that <math> d^2 =0 <\math>.}