06-240/Classnotes For Tuesday September 26: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{06-240/Navigation}}
{{06-240/Navigation}}


===Links to Classnotes===
Classnote for Tuesday Sept 26 [http://www.megaupload.com/?d=4L41DERL]
* Classnote for Tuesday Sept 26 [http://www.megaupload.com/?d=4L41DERL]
* PDF file by [[User:Alla]]: [[Media:MAT_Lect005.pdf|Week 3 Lecture 1 notes]]
* PDF file by [[User:Gokmen]]: [[Media:06-240-Lecture-26-september.pdf|Week 3 Lecture 1 notes]]

----

===Vector Spaces===

'''Example 5.''' <br>

<math>\mbox{Polynomials:}{}_{}^{}</math> <br>

<math>7x^3+9x^2-2x+\pi\ </math> <br>

<math>\mbox{Let } \mathcal{F }\ \mbox{be a field.}</math> <br>

<math>P(\mathcal{F})=\bigg\{ \sum_{i=1}^n a_i x^i :n \in \mathbb{Z}\,\ n\ge 0\ \forall i\ \ a_i \in \mathcal{F} \bigg\} {}_{}^{} </math>

<math> \mbox{Addition of polynomials is defined in the expected way:}{}_{}^{} </math> <br>

<math> \sum_{i=0}^n a_i x^i + \sum_{i=1}^m b_i x^i =\sum_{i=0}^{max(m,n)}{(a_i+b_i)} x^i </math> <br>


'''Theorem 1.'''(Cancellation law for vector spaces)<br>

<math> \mbox{If in a vector space x+z=y+z then x=y.}{}_{}^{} </math> <br>

'''Proof:'''<br>

<math> \mbox{Add w to both sides of a given equation where w is an element}{}_{}^{} </math>
<math> \mbox{for which z+w=0 (exists by VS4)}{}_{}^{} </math> <br>

<math>(x+y)+w=(y+z)+w \ </math> <br>

<math> x+(z+w)=y+(z+w)\ \mbox{(by VS2)} {}_{}^{} </math> <br>

<math> x+0=y+0\ \mbox{(by the choice of w)} {}_{}^{} </math> <br>

<math> x=y\ \mbox{(by VS3)} {}_{}^{} </math> <br>


'''Theorem 2.''' "0 is unique" <br>

<math> \mbox{If some z}\in\mbox{V satisfies x+z=0 for some x}\in \mbox{V then z=0.} {}_{}^{} </math> <br>

'''Proof:"<br>

<math>x+z=x+0\ </math> <br>

<math>z+x=0+x\ </math> <br>
<math>z=0\ </math> <br>


'''Theorem 3.''' "negatives are unique"<br>

<math> \mbox{If x+y=0 and x+z=0 then y=z.} {}_{}^{} </math> <br>


'''Theorem 4.'''<br>

a)<math>0_F.x=0_V\ </math> <br>

b)<math>a.0_V=0_V\ </math> <br>

c)<math>(-a)x=a(-x)=-(ax)\ </math> <br>


'''Theorem 5.'''<br>

<math> \mbox{If } x_i\ \mbox{ i=1,...,n are in V then } \sum {x_i}=x_1+x_2+...+x_n\ \mbox{ makes sense whichever way you parse it.} {}_{}^{} </math> <br>

<math> \mbox{(From VS1 and VS2)} {}_{}^{} </math> <br>
----
===Subspaces===

'''Definition'''<br>

<math> \mbox{Let V be a vector space. A subspace of V is a subset W of V which is a vector space in itself under the operations is inherits from V.}{}_{}^{} </math> <br>

'''Theorem'''<br>

<math>W\subset V\ \mbox{is a subspace of V iff}{}_{}^{} </math> <br>

#<math>\forall x,y\in W\ \ x+y\in W \ </math>
#<math> \forall a\in F,\ \forall x\in W\ \ ax\in W\ </math>
#<math>0 \in W\ </math> <br>

'''Proof'''<br>
<math>\Rightarrow </math> <br>

<math>\mbox{Assume W is a subspace. If x,y} \in \mbox{W then x+y} \in \mbox{W because W is a vector space in itself. Likewise for a.w.}{}_{}^{} </math> <br>

<math>\Leftarrow </math> <br>

<math>\mbox{Assume W}\subset \mbox{V for which } x,y\in W\Rightarrow x+y\in W\ ; x\in W, a\in F \Rightarrow ax\in W.\ {}_{}^{} </math> <br>

<math>\mbox{We need to show that W is a vector space. Addition and multiplication are clearly defined on W so we just need to check VS1-VS8.}{}_{}^{} </math> <br>

<math> \mbox{Indeed, VS1, VS2, VS5, VS6, VS7, and VS8 hold in V hence in W.}{}_{}^{} </math> <br>

<math> \mbox{VS3-pick any x}\in W\ \ 0=0.x\in W\ by\ 2.\ {}_{}^{} </math> <br>

<math> \mbox{VS4-given x in W, take y=(-1).x}\in W\ and\ x+y=0.\ {}_{}^{} </math> <br>


<u>Examples</u><br>

'''Example 1.'''<br>

'''Definition'''<br>

<math> \mbox{If A}\in M_{m\times n}(F) \mbox{ the transpose of A, } A^t \mbox{ is the matrix } (A^t)_{ij}:=A_{ji}. {}_{}^{} </math> <br>

<math> \begin{pmatrix} 2 & 3 & \pi\ \\ 7 & 8 & -2 \end{pmatrix}^t = \begin{pmatrix} 2 & 7 \\ 3 & 8 \\ \pi\ & -2 \end{pmatrix} </math> <br>

<math> \mbox{Then:} {}_{}^{} </math> <br>

#<math>A^t \in M_{n\times m}(F)\ </math> <br>
#<math>(A^t)^t=A\ </math> <br>
#<math>(A+B)^t=A^t+B^t\ </math> <br>
#<math>(cA)^t=c(A^t)\ \forall c\in F\ </math> <br>

'''Definition'''<br>

<math>A\in M_{n\times n}(F) \mbox{ is called symmetric if } A^t=A. \ {}_{}^{} </math> <br>

<u>Claim</u><br>

<math>V=M_{n\times n}(F) \ \mbox{ is a vector space. Let } \ W=\big\{ \mbox{symmetric A-s in V}\big\} = \big\{ A\in V: A^t=A \big\}\ \mbox{ then W is a subspace of V.} {}_{}^{} </math> <br>

<u>Proof</u><br>


1.<math> \mbox{Need to show that if } A\in W and\ B\in W\ then\ A+B\in W. \ {}_{}^{} </math> <br>

<math>A^t=A,\ B^t=B \ </math> <br>

<math>(A+B)^t=A^t+B^t=A+B\ so\ A+B\in W. </math> <br>

<math>\mbox{If } A\in W,\ c\in F \mbox{ need to show } cA\in W {}_{}^{} </math> <br>

<math>(cA)^t=cA^t=cA\ \Rightarrow cA\in W </math> <br>

3.<math>0_M=\begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{pmatrix} \Rightarrow 0^t=0 \ so \ 0\in W</math> <br>

'''Example 2.'''<br>

<math>V=M_{n\times n}(F) </math> <br>

<math>A=A_{ij}\ \ trA=\sum_{i=1}^n A_{ii}\ \mbox{(the trace of A)} </math> <br>

<math> \mbox{Properties of tr:}{}_{}^{} </math> <br>

#<math>tr0_M=0 \ </math> <br>
#<math>tr(A+B)=tr(A)+tr(B) \ </math> <br>
#<math> tr(cA)=c.trA \ </math> <br>

<math>A=\begin{pmatrix} 1 & 0 \\ 0 & 0\end{pmatrix}\ \ B=\begin{pmatrix} 0 & 0 \\ 0 & 1\end{pmatrix} \ </math> <br>
<math>trA=1\ \ trB=1 \ </math> <br>

<math>Set\ \ W=\big\{A\in V: trA=0\big\}=\bigg\{\begin{pmatrix} 1 & 7 \\ \pi\ & -1\end{pmatrix},...\bigg\} \ </math> <br>

<u>Claim</u>

<math> \mbox{W is a subspace.}{}_{}^{} </math> <br>

<math> \mbox{Indeed,}{}_{}^{} </math> <br>
#<math>A,B\in W \Rightarrow trA=0=trB\ \ tr(A+B)=tr(A)+tr(B)=0+0=0\ so\ A+B\in W\ </math>
#<math>A\in W\ \ trA=0\ \ tr(cA)=c(trA)=c.0=0\ so\ cA\in W\ </math>
#<math>tr0_M=0\ \ 0_M\in W \ </math>

'''Example 3.'''<br>

<math> W_3=\big\{ A\in M_{n\times n}(F): trA=1\big\} \mbox{ Not a subspace.} {}_{}^{} </math> <br>
<math> A,B\in W_3 \Rightarrow tr(A+B)=trA+trB=1+1=2\ so\ A+B\ \not\in W_3\ </math> <br>

'''Theorem'''<br>
<math> \mbox{The intersection of two subspaces of the same space is always a subspace.}{}_{}^{}</math><br>
<math> \mbox{Assume }W_1\subset V \mbox{ is a subspace of V, } W_2\subset V \mbox{ is a subspace of V, then }W_1\cap W_2=\big\{ x: x\in W_1 \ and\ x\in W_2\big\} \mbox{ is a subspace.}{}_{}^{} </math> <br>
<math>\mbox{However, }W_1\cup W_2=\big\{x: x\in W_1\ or\ W_2\big\} \mbox{ is most often not a subspace.} {}_{}^{}</math> <br>

'''Proof'''<br>

1.<math> \mbox{Assume }x,y \in W_1\cap W_2 \mbox{ , that is, } x\in W_1, x\in W_2, y\in W_1, y\in W_2. \ {}_{}^{} </math><br>
<math> x+y\in W_1 \ as\ x,y\in W_1 \mbox{ and } W_1 \mbox{ is a subspace}{}_{}^{} </math><br>
<math> x+y\in W_2 \ as\ x,y\in W_2 \mbox{ and } W_2 \mbox{ is a subspace}{}_{}^{} </math><br>
<math> \mbox{So }x+y \in W_1\cap W_2. \ {}_{}^{} </math><br>

2.<math>\mbox{If} \ x\in W_1\cap W_2\ then\ x\in W_1 \Rightarrow cx\in W_1\ ,\ x\in W_2 \Rightarrow cx\in W_2\ \Rightarrow cx\in W_1\cap W_2. \ {}_{}^{} </math><br>

3.<math>0 \in W_1\ ,\ 0\in W_2 \Rightarrow 0\in W_1\cap W_2. \ </math>

Latest revision as of 21:26, 24 October 2006

Links to Classnotes


Vector Spaces

Example 5.







Theorem 1.(Cancellation law for vector spaces)


Proof:







Theorem 2. "0 is unique"


Proof:"





Theorem 3. "negatives are unique"



Theorem 4.

a)

b)

c)


Theorem 5.




Subspaces

Definition


Theorem



Proof









Examples

Example 1.

Definition








Definition


Claim


Proof


1.





3.

Example 2.










Claim



Example 3.



Theorem



Proof

1.



2.

3.